Классификация экспертных систем.

БЗ содержит факты (данные) и правила (или другие представления знаний), использующие эти факты как основу для принятия решений. Механизм вывода содержит:

· интерпретатор, определяющий как применять правила для вывода новых знаний на основе информации, хранящейся в БЗ;

· диспетчер, устанавливающий порядок применения этих правил.

Такие ЭС получили название статических ЭС и имеют структуру, аналогичную рис.3. Эти ЭС используются в тех приложениях, где можно не учитывать изменения окружающего мира за время решения задачи.

Однако существует более высокий класс приложений, где требуется учитывать динамику изменения окружающего мира за время исполнения приложения. Такие экспертные системы получили название динамических ЭС иих обобщённая структура будет иметь вид, приведённый на рис.4.

По сравнению со статической ЭС в динамическую вводится ещё два компонента:

· подсистема моделирования внешнего мира;

· подсистема сопряжения с внешним миром.

Динамические ЭС осуществляет связи с внешним миром через систему контроллеров и датчиков. Кроме того компоненты БЗ и механизма вывода существенно изменяются, чтобы отразить временную логику происходящих в реальном мире событий.

К разряду таких динамических сред разработки ЭС относится семейство программных продуктов фирмы Gensym Corp. (США). Один из таких продуктов система G2 – базовый программный продукт, представляющий собой графическую, объектно-ориентированную среду для построения и сопровождения экспертных систем реального времени, предназначенных для мониторинга, диагностики, оптимизации, планирования и управления динамическим процессом.


 

Кластерный анализ.

КЛАСТЕРНЫЙ АНАЛИЗ - это совокупность методов, позволяющих классифицировать многомерные наблюдения, каждое из которых описывается набором признаков. ЦЕЛЬЮ КЛАСТЕРНОГО АНАЛИЗАявляется образование групп схожих между собой объектов, которые называются кластерами.

Методы кластерного анализа позволяют решать следующие задачи:

· проведение классификации объектов с учетом признаков, отражающих сущность, природу объектов;

· проверка выдвигаемых предположений о наличии некоторой структурной связи совокупности изучаемых объектов;

· построение новых классификаций для слабоизученных объектов.

Методы кластерного анализа делятся на следующие группы: агломеративные (объединяющие), дивизимные (разделяющие) и итеративные.

· Агломеративные методы последовательно объединяют отдельные объекты в группы (кластеры).

· Дивизимные методы расчленяют группы на отдельные объекты.

· Итеративные методы -кластеры формируются исходя из задаваемых условий разбиения, которые могут быть изменены пользователем для достижения желаемого качества. Эти методы могут привести к образованию пересекающихся кластеров, когда один объект может одновременно принадлежать нескольким кластерам.

Существует три различных подхода к проблеме кластерного анализа: эвристический, экстремальный и статистический.

Эвристический подход характеризуется отсутствием формальной модели изучаемой модели и критерия для сравнения различных решений. Его основой является алгоритм, построенный исходя из интуитивных соображений.

При экстремальном подходе также не формулируется исходная модель, а задается критерий, определяющий качество разбиения на кластеры. Такой подход особенно полезен, если цель исследования четко определена. В этом случае качество разбиения может измеряться эффективностью выполнения цели.

Основой статистического подхода является вероятностная модель исследуемого процесса, что дает возможность ставить задачи, связанные с воспроизводимостью результатов.

В задачах кластерного анализа обычной формой представления исходных данных служит прямоугольная таблица, каждая строка которой представляет результат измерения k признаков на одном из n обследованных объектов:

Таким образом это матрица X. Числовые значения элементов матрицы X могут соответствовать переменным трех типов: количественным, ранговым и качественным. Желательно, чтобы таблица исходных данных соответствовала одному типу переменных. В противном случае разные типы переменных стараются свести к какому-то одному типу переменных. Например, все переменные можно свести к дихотомным, используя следующую процедуру. Количественные переменные переводят в ранговые, разбивая области значений количественной переменной на интервалы, которые затем нумеруются числами натурального ряда. Ранговые переменные автоматически становятся качественными, если не учитывать упорядоченности их значений. Что касается качественных переменных, то каждому из возможных ее значений приходится сопоставлять дихотомную переменную, которая будет равна 1, если качественная переменная приняла заданное значение, и 0 - в противном случае.