Основные преимущества и применение LTCC технологии

Среди основных преимуществ и особенностей LTCC технологии отметим следующие:

· Очень хорошие электрические характеристики и стабильность до миллиметровых длин волн. В зависимости от используемых материалов диэлектрическая проницаемость низкотемпературной керамики варьируется от 6 до 9, а тангенс угла диэлектрических потерь от 0,001 до 0,006 в гигагерцовом диапазоне. В качестве металлизации используются металлы с низким удельным сопротивлением (Ag, Au, Pt).

· Превосходная механическая стабильность и сохранение линейных размеров. Это преимущество возникает не только из-за малого коэффициента теплового расширения (5-7 мкм/моС), но и из-за эластичных свойств в широком диапазоне температур.

· Низкий КТР. КТР низкотемпературной керамики близок к КТР основных полупроводниковых материалов электроники (Si, GaAs, InP). Это позволяет монтировать полупроводниковые кристаллы непосредственно на основание платы.

· Хорошая теплопроводность. Теплопроводность LTCC керамики составляет 2-4 Вт/мК, что гораздо выше, чем у печатных плат на основе органических материалов (0,1-0,5 Вт/мК). Теплопроводность LTCC также может быть улучшена за счёт создания тепловых стоков с помощью металлизации (до 20 Вт/мК).

· Возможность 3D интеграции. Можно легко создавать полости, отверстия, ограничители, встроенные пассивные компоненты (рис. 2).

· Герметичность и возможность высокотемпературной пайки. Плотная структура LTCC керамики не пропускает влагу, поэтому корпуса из керамики могут быть использованы в атмосфере с высокой влажностью без дополнительной защиты. Также LTCC материалы в отличие от органических материалов сохраняют свои свойства во влажной среде (большая часть органических материалов сильно подвер- жена влиянию влаги).

Рис. 2 Многослойная плата из никотемпературной совместно обжигаемой керамики

В дополнение к этому технология LTCC доказала свою надёжность и экономическую эффективность в широком спектре задач СВЧ электроники. Благодаря всем вышеперечисленным особенностям, LTCC технология нашла широкое применение в создании многослойных плат для высокочастотных электронных приборов, корпусов микросхем и выступает в качестве альтернативы многослойным печатным платам из стеклотекстолита и высокотемпературной керамики.

Микросхемы с корпусами на основе низкотемпературной совместно обжигаемой керамики успешно применяются в автомобильной, потребительской электронике, телекоммуникациях, спутниковых системах и в военных изделиях. Миллионы устройств уже созданы на основе LTCC технологии и функционируют в настоящее время. Изначально LTCC технология использовалась для крупносерийного производства СВЧ устройств. Но благодаря своим диэлектрическим и механическим свойствам, а также надёжности и стабильности, низкотемпературная керамика начала активно применяться и для производства различных сенсоров, механических систем (МЭМС-устройств) и трёхмерных интегрированных структур.