Технология производства LTCC.

Процесс производства изделий из LTCC керамики (рис. 3) начинается с создания керамической суспензии путём смешивания керамического порошка, органических связующих, растворителей и модифицирующих добавок. Из суспензии впоследствии формируется керамическая лента. Лента нарезается на листы необходимых размеров в соответствии с имеющимся оборудованием. Затем производится формирование переходных отверстий, заполнение переходных отверстий проводящей пастой и формирование топологии с помощью специальных проводящих и резистивных паст. Керамические листы совмещаются, ламинируются, разрезаются на отдельные элементы и обжигаются.

Рис. 3 Процесс производства многослойных плат из низкотемпературной керамики

Процесс термообработки керамики, как правило, состоит из этапа изостатического ламинирования при температурах 60-70°С под давлением, этапа выжигания органики при температурах 450-500OС в течение 2-2,5 часов, затем следует обжиг при температуре 850OС в течение 10 минут (рис. 4). Низкие температуры обжига позволяют использовать металлы с низким удельным сопротивлением (золото, серебро). Это является одним из ключевых преимуществ LTCC технологии, поскольку позволяет существенно снизить стоимость создания многослойной керамической структуры и улучшить характеристики. Использование серебра снижает электрическое сопротивление проводящих слоёв, а окислительная атмосфера (воздух) даёт возможность совместно применять оксидную керамику с высоким коэффициентом диэлектрической проницаемости.

После обжига LTCC керамика сохраняет свою структуру даже при воздействии высоких температур. Это позволяет создавать устройства, работающие в широком диапазоне температур.

Керамика во время обжига становится более плотной и, как правило, даёт усадку в размерах на 9-15% в плоскости листов (ось X, Y) и на 10-30% в направлении, перпендикулярном плоскости листов (ось Z). Это необходимо учитывать как при проектировании систем на основе LTCC, так и при выборе проводящих/резистивных паст. Пасты должны иметь коэффициент усадки, схожий со значениями для керамических листов.

Рис. 4 Температурный профиль для обжига низкотемпературной совместно обжигаемой керамики

Основными материалами, необходимыми для производства LTCC изделий, являются керамические порошки, специальные добавки, готовые керамические листы, а также пасты для создания проводников и встроенных пассивных компонентов. Все эти материалы объединяются в специальные LTCC системы, в которых каждый компонент создан с учётом обеспечения химической и физической совместимости с другими элементами. Создание LTCC системы – сложный, наукоёмкий процесс, требующий существенных инвестиций. Поэтому, как правило, каждая LTCC система представляет собой уникальное решение, и заменить один из его компонентов материалом другого производителя не представляется возможным.

Керамические листы

Керамические листы (рис. 5), сформированные из керамической суспензии, являются базовым материалом для производства изделий СВЧ электроники. От качества керамических листов зависят стабильность и повторяемость параметров технологического процесса производства LTCC устройств. Кроме того, характеристики керамических листов определяют функциональные возможности устройств, работающих на высоких частотах.

Рис. 5 Керамические листы

Низкотемпературная керамика создаётся на основе кристаллизированного стекла или смеси стекла и керамики (Al2O3, Si2O3, PbO и т.д.). Свойства керамической ленты могут быть модифицированы добавками с различными электрическими и физическими свойствами (пьезоэлектрики, ферроэлектрики и т.д.) в зависимости от решаемой задачи. Коэффициент теплового расширения может быть подобран для согласования с алюмооксидной керамикой, кремнием или арсенидом галлия.

LTCC керамика сохраняет свои характеристики в широком спектре частот и очень хорошо подходит для применения в высокочастотной технике (рис. 6). Материал керамики демонстрирует стабильность коэффициента диэлектрической проницаемости k и диэлектрических потерь. Некоторые производители комбинируют в одном процессе материалы с низким значением диэлектрической проницаемости k и материалы с высокими значениями k. Это даёт возможность создавать внутренние конденсаторы высокой ёмкости, позволяя уменьшать размеры GaAs СВЧ микросхем.

Низкотемпературная совместно обжигаемая керамика продолжает совершентвоваться как в области технологических параметров, так и в области физических и электрических характеристик.

Рис. 6 Характеристики низкотемпературной керамики на высоких частотах (Ferro А6-S)

Пасты

Проводники, совместимые с низкотемпературной керамикой, являются важнейшей частью LTCC систем. Металлизация может быть создана на основе золота, серебра или их совместного использования (серебряные пасты для формирования внутренних проводников, золотые для поверхности). Проводящие пасты легко наносятся методом трафаретной печати и дают возможность получать топологию с высоким разрешением. При совместном обжиге важными параметрами LTCC металлизации являются усадка и тепловое расширение материалов. Они должны быть сопоставимы с параметрами для используемой керамики. Помимо этого, пасты для металлизации должны быть химически совместимы с материалом низкотемпературной керамики. Крупные производители, как правило, предлагают комплексные LTCC системы, в которых керамические материалы и проводящие/резистивные пасты подобраны для получения полной совместимости.

Низкие потери СВЧ являются особенностью LTCC систем. Проведенные исследования показали, что потери, связанные с проводниками, становятся сравнимыми с потерями в диэлектриках при частотах свыше 1 ГГц. Это необходимо учитывать при проектировании устройств и выборе системы LTCC материалов (керамика + проводящие пасты). Потери в проводниках ограничены не только внутренним удельным сопротивлением, но и природой органической связки в пастах, геометрией и шероховатостью поверхности проводящих дорожек. Проводники на основе золота имеют более высокие потери, чем прово дники на основе серебра, поскольку золото обладает большим удельным электрическим сопротивлением (2,3 Ом-см у золота против 1,6 Ом-см у серебра). Очевидно, что переход на проводящие материалы на основе серебра не только снижает потери, но и уменьшает стоимость LTCC системы. Однако когда надёжность и использование проволочной микросварки являются основными критериями выбора технологии, проводники на основе золота более предпочтительны. Смешанные системы металлизации совмещают в себе достоинства золотых и серебряных проводников. В таких системах золото используется для создания поверхностных проводников, а серебро – для внутренних. Переход между двумя металлами осуществляется с помощью специальных паст, предотвращающих возникновение эффекта Киркендаля (взаимной диффузии атомов золота и серебра). Таким образом, система смешанной металлизации позволяет создавать относительно недорогие устройства с высоким быстродействием.

Компании производители LTCC материалов предлагают широкий спектр материалов для создания резисторов и конденсаторов, встроенных в многослойную керамическую плату. Резистивные пасты позволяют создавать встроенные резисторы с сопротивлением от 10 до 10000 Ом/квадрат с допусками ±10% и температурными коэффициентом сопротивления ±200х106 C1. Параэлектрические и сегнетоэлектрические материалы доступны с диэлектрической проницаемостью от 5 до 2000, с минимально возможной толщиной нанесения 10 мкм, но не всегда удаётся обеспечить химическую совместимость материалов паст и керамики. Развитие резистивных и диэлектрических материалов продолжается в направлении создания резисторов с высоким значением сопротивления, с более высокими допусками и низким значением температурного коэффициента сопротивления. Также производители материалов для LTCC технологии стремятся создать химически совместимые диэлектрики с высокими значениями диэлектрической постоянной.