Сплайсинг общая характеристика и механизмы

Многие гены эукариот состоят из экзонов – кодирующих по-следовательностей и интронов – некодирующих последовательно-стей. При транскрипции таких генов считывается РНК, содержащая в своем составе как экзоны, так и интроны. Образовавшийся первичный транскрипт, подвергается процессингу, в результате которого интроны вырезаются, а экзоны, сшиваясь, образуют зрелую РНК . Данный процесс получил название сплайсинг. Сплайсингу подвергаются предшественники различных эука-риотических РНК: иРНК, тРНК, рРНК. У эукариот в предшественниках иРНК (пре-РНК) интроны вы-резаются в сплайсосомах – комплексах, состоящих из мяРНК и бел-ков. Интроны на границах с экзонами имеют канонические последо-вательности на 5’-конце – ГУ, на 3’-конце – АГ. Они также содержат последовательности, необходимые для удаления: акцепторный сайт, донорный сайт и бранч-сайт (рис.5.13). мяРНК в соответствии с пра-вилом комплементарности и белки, взаимодействуя с этими сайтами, обеспечивают удаление интронов.

Процесс удаления интронов включает

a) разрыв молекулы РНК на границе интрон-экзон со стороны 5’-конца интрона;

b) образование сложнофирных связей между фосфатной груп-пой первого нуклеотидаинтрона (Г) и гидроксильной груп-пой рибозы (у 2’ атома углерода) аденозина, входящего в со-став бранч-сайта. Сформировавшаяся структура напоминает лассо;

c) удаление и последующее разрушение интрона;

d) воссоединение экзонов посредством образования фосфодиэфирных связей.

Следует также отметить, что у первичных транскриптов в митохондриях и хлоропластах, а также у предшественников дрожжевых тРНК канонические последовательности ГУ– АГ на границе интронэкзон отсутствуют. Альтернативный сплайсинг Определенные полинуклеотидные последовательности РНК в одних случаях могут выступать в качестве интрона, в других – в качестве экзона. В связи с этим сплайсинг РНК может осуществляться альтернативными путями Образовавшиеся в результате альтернативного сплайсинга зрелые РНК будут отличаться друг от друга первичной структурой. Такие РНК будут иметь как идентичные, так и свои собственные фрагменты полинуклеотидных последовательностей.

Альтернативный сплайсинг

Альтернативный сплайсинг обеспечивает образования разнообразных белков с одного и того же первичного транскрипта. Например, в клетках щитовидной железы в результате транскрипции определенного гена и последующего сплайсинга образуется иРНК, служащая матрицей для синтеза гормона кальцитонина, ответствен-ного за регуляцию обмена кальция. В мозге же из первичного транс-крипта, считанного с этого же гена, вследствие альтернативного ва-рианта сплайсинга образуется иРНК, кодирующая белок, отвечающий за восприятие вкуса. В случае альтернативного сплайсинга экзоны обычно выстраи-ваются в той же ориентации, в какой они располагались в гене. Транссплайсинг – форма сплайсинга, при которой соединяются экзоны разных РНК

Аутосплайсинг (самосплайсинг) – сплайсинг первичного транс-крипта РНК, происходящий без участия каких-либо ферментов, т.е. РНК сама является катализатором этого процесса. Так у инфузории Tetrаchymenа thermophyla образуется 35S предшественник рРНК (пре-рРНК) длиной 6400 нуклеотидов. Без участия белков из этой пре-рРНК вырезается интрон длиной 414 нуклеотидов. При этом два экзона сшиваются с образованием 26S рРНК. Для протекания сплайсинга необходимо присутствие нуклеотида содержащего гуанин (ГТФ, или ГДФ, или ГМФ, или гуанозин). На 3’-гидроксильную группу этого гуанинового нуклео-тида переносится фосфатная группа 5’-конца интрона. Затем образовавшаяся на конце первого экзона 3’-гидроксильная группа используется для присоединения к 5’-концу второго экзона посредством фосфодиэфрной связи. Вырезание интрона сопровождается его циклизацией и удалением из его состава небольшого фрагмента, содержащего тот гуаниновый нуклеотид, который использовался для инициации сплайсинга, Интроны, аналогичные интронам Tetrаchymenа thermophyla, встречаются в пре-рРНК митохондрий, хлоропластов, грибов.

 

 

33. Модификация 5'- и 3'-концов транскриптов, кэп и полиА-хвост

В процессе созревания иРНК эукариот происходит образование на 5’-конце кэпа, удаление интронов, синтез на 3’-конце полиА-последовательности. В отличие от эукариот иРНК только в единичных случаях подвержены процессингу. Эукариоты Созревание иРНК происходит в ядре эукариотических клеток. Этот процесс начинается, как правило, уже в ходе транскрипции. К 5’-концу иРНК присоединяется кэп. На 3’-конце иРНК по окончании транскрипции образуется полиА-последовательность, сигналом для полиаденилирования служит последовательность AAUAAA, расположенная за 11 – 30 нуклеотидов до сайта полиаденилирования. иРНК эукариот также подвергаются сплайсингу. Зрелая иРНК транс-портируется из ядра в цитоплазму клетки, где она служит матрицей для синтеза белка Рис.5.18. Процессинг иРНК эукариот

Следует отметить, что некоторые иРНК экариот не имеют полиА-последовательностей, и что некоторые предшественники иРНК не содержат интронов. Естественно, что они неподвергаются сплайсингу. Процессинг иРНК прокариот иРНК прокариот, как правило, процессингу не подвергается, потому что процессы транскрипции итрансляции у них сопряжены. Еще до завершения транскрипции с иРНК, синтезируемой РНКполимеразой, взаимодействуют рибосомы, которые и начинают син-тез полипептидных цепей Некоторые полицистронные иРНК прокариот могут расщеп-ляться с образованием индивидуальных иРНК. В одних случаях такое расщепление необходимо для успешной трансляции, в других не является обязательным. В некоторых случаях 3’-конец иРНК прокариот подвергается посттранскрипционному полиаденилированию, размер поли А-последовательностей составляет 14 – 60 нуклеотидов. Некоторые пре-иРНК прокариот содержат интроны.

иРНК эукариот ; иРНК эукариот являются моноцистронными и составляют 2 – 6 % от всей РНК в клетке. На их 5’-конце имеется кэп. Кэп пред-ставляет собой 7-метилгуанозин, связанный трифосфатной связью 5’-5’со следующим нуклеотидом. Присоединение кэпа происходит посттранскрипционно. Кроме того, остатки рибозы двух следующих за 7-метилгуанозином нуклеотидов также могут быть метилированы Кэп играет важную роль в инициации синтеза белка.На 3’-конце большинства иРНК эукариот имеется полиА-последовательность. Некоторые иРНК эукариот не имеют полиА-последовательности, например, иРНК гистонов. ПолиА- последовательность не закодирована в генах, поэтому полиаденилирование осуществляется после транскрипции (в ядре) ферментом полиаденилатполимеразой. ПолиАпоследовательность имеет размер около 50 – 400 нуклеотидов. В цитоплазме она постепенно укорачивается и определяет время жизни иРНК. Таким образом, эта последовательность защищает иРНК от деградации последовательности, кодирующей полипептидную цепь. Кроме того, она способствует транспорту иРНК из ядра в цитоплазму. На эффективность трансляции полиА-последовательность влияния не оказывает. Кодирующая, или транслируемая, область иРНК начинается с инициирующего кодона и заканчивается одним из трех терминирующих кодонов. На 5’-и 3’- флангах иРНК располагаются нетранслируемые области Период полужизни иРНК эукариот значительно больше, чем у прокариот, и составляет от нескольких часов до нескольких суток.