По содержанию Al2O3 глиноземистые цементы подразделяются на 4 вида

Классификация цементов по химическому составу

Вид цемента Условное обозначение Содержание Al2O3, % не менее
Глиноземистый цемент ГЦ
Высокоглиноземистый цемент I ВГЦ I
Высокоглиноземистый цемент II ВГЦ II
Высокоглиноземистый цемент III ВГЦ III

 

К нормируемым показателям качества глиноземистого цемента относят: марку по прочности, тонкость помола и сроки схватывания.

Тонкость помола оценивают по остатку на сите №008 (80 мкм), который должен быть не более 10% массы просеиваемой пробы.

Истинная плотность глиноземистого цемента 3100…3300 кг/м3 , насыпная плотность 1000…1300 кг/м3.

Нормальная густота составляет 24…28%.

• Глиноземистый цемент обладает нормальными сроками схватывания, не смотря на его быстрое твердение: начало – не ранее 45 мин, конец – не позднее 10 ч.

По пределу прочности при сжатии (МПа) в возрасте 3 суток глиноземистые цементы подразделяются на марки: ГЦ–40, ГЦ–50, ГЦ–60. В возрасте 1 сут. глиноземистый цемент набирает 75…90% марочной прочности.

• В продуктах гидратации глиноземистого цемента не содержатся Ca(OH)2 и 3CaO·Al2O3·6Н2О, вследствие чего бетон на глиноземистом цементе более стоек к коррозии выщелачивания по сравнению с бетонами на портландцементе, а также в растворах сульфата кальция и магния (в частности, в морской воде). Однако затвердевший глиноземистый цемент разрушается в растворах кислот и щелочей.

Усадка глиноземистого цемента при твердении на воздухе в 3…5 раз ниже, чем у портландцемента, пористость ниже в 1,5 раза. Бетоны на глиноземистом цементе характеризуются высокой водостойкостью, морозостойкостью и жаростойкостью. Жаростойкость глиноземистого цемента тем выше, чем больше в нем глинозема и меньше кремнезема.

Применение

Глиноземистый цемент применяют: для получения высокопрочных быстротвердеющих бетонов, в особенности, твердеющих при пониженных температурах (при аварийных и ремонтных работах, зимнем бетонировании); в конструкциях, подвергающихся систематическому замораживанию-оттаиванию, увлажнению и высушиванию, особенно, в агрессивных средах; для получения жароупорных бетонов и растворов; для получения расширяющихся и безусадочных цементов.

Коррозия цементного камня

Коррозия цементного камня проявляется при действии на него агрессивных жидкостей и газов. Наиболее уязвимыми с точки зрения коррозии продуктами гидратации портландцемента являются портландит Са(ОН)2 и гидроалюминат кальция 3СаО·Al2O3·6H2O. Коррозионные процессы в цементном камне в зависимости от причины принято разделять на 3 группы:

Коррозия I вида – растворение составляющих цементного камня, вымывание гидроксида кальция (коррозия выщелачивания). Гидроксид кальция Са(ОН)2 является водорастворимым соединением, а его содержание составляет 10…15% (до 20%) от всех продуктов гидратации портландцемента. Его вымывание происходит весьма интенсивно при действии на цементный камень мягких вод. После вымывания свободного гидроксида кальция начинается разложение гидросиликатов кальция 3СаО·2SiO2·3H2O. Выщелачивание портландита в количестве 15…30% от общего содержания приводит к снижению прочности цементного камня на 40..50% и более.

Основным методом борьбы с коррозией выщелачивания является введение в портландцемент активных минеральных добавок, связывающих водорастворимый портландит в низкоосновные водонерастворимые гидросиликаты кальция. Повысить стойкость бетона к коррозии выщелачивания можно также путем снижения проницаемости бетона за счет использования химических добавок – пластификаторов, гидрофобизаторов и др.

Коррозия II вида – образование легкорастворимых солей при взаимодействии составляющих цементного камня с агрессивными веществами и их вымывание. К данному виду коррозии относят:

Кислотная коррозия проявляется при действии на цементный камень растворов кислот с pH<7. В зависимости от pH коррозия может протекать достаточно интенсивно. Отрицательное воздействие кислой среды на бетон становится заметным при pH≤6,5, а на особо плотный бетон – при pH≤4,9…4. Кислота взаимодействует с портландитом с образованием растворимых солей:

• Ca(OH)2 + 2HCl → CaCl2 + H2O;

• Ca(OH)2 + H2SO4 → CaSO4·2H2O.

• Кислоты могут взаимодействовать также с гидросиликатами кальция с образованием водорастворимых солей и бессвязных аморфных масс:

• 3СаО·2SiO2·3H2O + mHCl → 3CaCl2 + 2SiO2·aq + nH2O.

Разновидностью кислотной коррозии является углекислотная коррозия, которая развивается при действии на цементный камень воды, содержащей свободный диоксид углерода в виде слабой угольной кислоты. Вначале реакция протекает между портландитом и углекислотой:

• Ca(OH)2 + CO2 + H2O → CaCO3 + 2H2O.

• Затем образуется бикарбонат кальция:

• CaCO3 + H2CO3 ↔ Ca(HCO3)2.

Защитить бетон от действия сильных кислот достаточно трудно, поэтому для бетонов, предназначенных для эксплуатации в агрессивных кислых средах, используют специальные кислотостойкие цементы и кислотостойкие заполнители.

• Магнезиальная коррозия.

• Соли магния встречаются в грунтовых водах и в большом количестве содержатся в морской воде. В результате магнезиальной коррозии образуются растворимые соли, вымываемые из бетона:

• Ca(OH)2 + MgCl2 → CaCl2 + Mg(OH)2;

• Ca(OH)2 + MgSO4 + 2H2O → CaSO4·2H2O + Mg(OH)2.

• Коррозия под действием минеральных удобрений, наиболее опасными из которых для цементного камня являются аммиачная селитра NH4NO3 и сульфат аммония (NH4)2SO4, происходит по схеме:

• Ca(OH)2 + 2NH4NO3 + 2H2O → Ca(NO3)2·4H2O + 2NH3↑.

Коррозия III вида – образование в порах цементного камня солей с увеличением объема, что вызывает появление в цементном камне внутренних напряжений и приводит к разрушению. К коррозии III вида относится, в первую очередь, сульфоалюминатная коррозия, которая проявляется при действии на гидроалюминат кальция 3СаО·Al2O3·6H2O воды, содержащей сульфатные ионы:

• 3СаО·Al2O3·6H2O + 3CaSO4 + 25…26H2O→

• →3СаО·Al2O3·3CaSO4·31…32H2O.

• В результате данной реакции образуется эттрингит, который занимает в 2…2,5 раза больший объем по сравнению с исходными компонентами реакции. Как было отмечено выше, в процессе твердения портландцемента образование эттрингита играет положительную роль, поскольку его игловидные кристаллы уплотняют структуру и упрочняют цементный камень.

• Образование эттрингита в затвердевшем цементном камне приводит к появлению внутренних растягивающих напряжений и растрескиванию цементного камня (в данном случае эттрингит называют «цементной бациллой»). В железобетонных конструкциях растрескивается, прежде всего, защитный слой бетона, после чего начинается коррозия стальной арматуры. Возможность сульфоалюминатной коррозии всегда необходимо учитывать при строительстве морских сооружений. Основным способом борьбы с сульфоалюминатной коррозией является использование сульфатостойкого портландцемента.

К коррозии III вида относится также щелочная коррозия, которая может происходить под влиянием двух факторов. Первый фактор – непосредственное воздействие щелочи на цементный камень. В этом случае после высыхания насыщенного щелочью бетона, под влиянием углекислого газа в порах бетона образуется сода и поташ, которые, кристаллизуясь, увеличиваются в объеме и разрушают цементный камень. Второй фактор – взаимодействие щелочей цементного камня с реакционноспособными примесями, содержащимися в заполнителях, в особенности, в песке (например, опал, халцедон, вулканическое стекло). Данный вид коррозии может проявляться в появлении трещин, шелушении и вспучивании поверхности бетона.