Стеклообразное и высокоэластичное состояние полимера

Семчиков 148-154.

Стеклообразное состояние - это одна из форм твердого состояния аморфных полимеров, для которой характерны небольшие упругие деформации с высокими значениями модуля упругости (2∙10^3 - 5∙10^3 МПа). Эти деформации связаны с небольшим изменением расстояний между атомами и валентных углов основной цепи.

Для высокоэластического состояния характерны большие обратимые деформации (до 600-800%) и малые значения модуля эластичности полимера (0,2-2 МПа). Растяжение полимера при высокоэластической деформации сопровождается выделением энергии в форме теплоты, сокращение – сжатием. Модуль эластичности деформируемого полимера растет с повышением температуры, тогда как модуль упругости в стеклообразном состоянии падает. Высокоэластическая деформация протекает во времени, так как она обусловлена перемещением сегментов и, следовательно, является релаксационным молекулярно-кинетическим процессом.

Наиболее ярко высокоэластическое состояние проявляется у «сшитых» каучуков, т.е. резин. У линейных полимеров на обратимую деформацию накладывается необратимая, т.е. течение. Высокоэластическое состояние может наблюдаться у полимеров в различных интервалах температуры — от ‑100 до 200 °С. Техническое применение высокоэластических материалов связано с их амортизирующими свойствами и низким модулем упругости.

При воздействии внешней периодической силы высокой частоты полимеры, находящиеся в высокоэластическом состоянии, могут переходить в упруготвердое деформационное состояние, не связанное с «замораживанием» подвижности сегментов (табл. 4.1). Такого рода стеклование в силовых полях при температурах, выше температуры структурного стеклования, называется механическим стеклованием. Природа этого явления была рассмотрена ранее.

При стекловании происходит скачкообразное изменение теплоемкости, температурного коэффициента объемного расширения и коэффициента термической сжимаемости, тогда как на кривых зависимости удельного объема, энтальпии и энтропии наблюдается лишь излом. При Т = Тс вторые производные функции Гиббса, так как оно приводит к неравновесному метастабильному состоянию системы. Это находит подтверждение в ряде кинетических признаков:

монотонном и неограниченном снижении температуры стеклования при уменьшении скорости охлаждения и наоборот;

противоположном направлении изменения теплоемкости при стекловании и фазовом переходе второго рода (при стекловании теплоемкость уменьшается).


При стекловании свободный объем достигает минимальной величины, и движение сегментов прекращается. Свободный объём:

Свободный объем распределен по полимеру в виде микропор, происхождение которых связано с неоднородностью структуры.

 
 

Изменение объема тела при нагревании характеризуется коэффициентом расширения α. При Т > Тс изменение объема полимера в основном определяется изменением свободного объема, коэффициент расширения для этой области обозначается как α1. При Т<ТС свободный объем изменяется в существенно меньшей степени (рис. 4.6), изменение объема полимера в этой области происходит по закону, характерному для твердых кристаллических тел с коэффициентом объемного расширения α2. Величина Δα = α1 - α2 имеет физический смысл коэффициента температурного расширения свободного объема.

Таким образом, следует считать, что имеют место два независимых перехода при Т2 и Тс, которые коррелируют друг с другом.

Кинетическая теория стеклования. Для полярных полимеров с сильным межмолекулярным взаимодействием хорошие результаты дает теория Журкова. Согласно этой теории, стеклование полимера, т.е. прекращение теплового движения сегментов, обусловлено образованием пространственной сетки слабых межмолекулярных когезионных связей - дипольных, донорно-акцепторных (в том числе и водородных).

Энергия межмолекулярного взаимодействия мало зависит от температуры, тогда как энергия теплового движения звеньев пропорциональна кТ. С понижением температуры энергия теплового движения уменьшается и, когда она оказывается недостаточной для преодоления сил межмолекулярного взаимодействия, происходит образование сетки межмолекулярных связей, т.е. стеклование. При этом, для перехода в стеклообразное состояние достаточно «замораживания» подвижности сегментов Куна, в то время как движение других структурных элементов – звеньев, боковых заместителей – сохраняется.

С увеличением полярности полимера и, следовательно, жесткости цепи значение температуры стеклования увеличивается. Блокирование полярных групп полимеров введением небольших добавок низкомолекулярных соединений приводит к снижению межмакромолекулярного взаимодействия и, соответственно, температуры стеклования.

На основании изложенного очевидно, что температура стеклования в первую очередь будет зависеть от факторов, определяющих гибкость цепи и возможность конформационных переходов. Гибкость цепи определяется природой связей в основной цепи, а также объемом и полярностью заместителей при этой цепи. Известно, например, что введение в цепь простых эфирных связей повышает ее гибкость, а амидных группировок - понижает. В соответствии с этим в первом случае температура стеклования понижается, во втором – повышается.

так называемые объемные недеформируемые заместители повышают температуру стеклования, например, для полистирола и поливинилнафталина она равна 100 °С и 211 °С соответственно;

гибкие боковые группы понижают температуру стеклования, например, полиметилакрилат и полибутилакрилат имеют температуру стеклования 2 °С и -40 °С, соответственно;

увеличение полярности заместителя приводит к уменьшению гибкости цепи вследствие ограничения свободы ее вращения и, как следствие, к повышению температуры стеклования.

В области малых значений молекулярной массы последняя влияет на температуру стеклования полимера. Это объясняется увеличением свободного объема полимера, содержащего короткие цепи, поскольку их концы препятствуют плотной упаковке макромолекул. Избыточный свободный объем низкомолекулярного полимера приводит к тому, что конформационные переходы макромолекул могут осуществляться при более низких температурах по сравнению с полимером большей молекулярной массы.

В случае сшитых полимеров имеет место обратное явление - сшивка «сближает» макромолекулы, что приводит к уменьшению свободного объема и увеличению температуры стеклования «сшитого» полимера по сравнению с линейным.