Вещество / Рабочая деформация, % / Рабочее напряжение, МН/м2 / Запасаемая упругая энергия 106 Дж/м3 / Плотность, кг/м3 /Запасаемая энергия, Дж/кг 11 страница

Железо было дорого, но дешевое дерево имелось в неограниченных количествах. Кроме того, американские путейцы, подобно своим коллегам - судостроителям, готовы были в такой мере рисковать жизнью и собственностью людей, что у британских инженеров от одной мысли об этом волосы под котелками встали бы дыбом. И это при том, что британских инженеров тех времен отнюдь нельзя назвать особенно осторожными, сегодня мы скорее назвали бы их опрометчивыми. Американцы XIX в. привыкли жить в состоянии постоянной опасности, но за это они должны благодарить скорее своих инженеров, чем бандитов или индейцев.

Железные дороги прокладывались на запад весьма быстро и с минимальным использованием дорогостоящих земляных работ - выемок и насыпей. Часто долины пересекали виадуки в виде длиннейших деревянных эстакад, которые так напугали преподобного доктора Мэннинга. Многие из них сохранились и до наших дней, и они всегда будут ассоциироваться с американскими железными дорогами (рис. 103).

Рис. 103. Деревянная железнодорожная эстакада.

После того как все было построено, американские железные дороги сделались чрезвычайно прибыльными предприятиями - говорят, что на Центральной тихоокеанской дороге дивиденды достигали 60%. Это позволило вскоре заменить большинство ненадежных эстакадных мостов сплошными земляными насыпями. Грунт из специально сконструированных вагонов ссыпался с эстакады, пока вся деревянная конструкция не скрывалась под землей, чтобы спокойно там сгнить.

Широкие и бурные реки нельзя было пересечь с помощью деревянных эстакад, поэтому возникла необходимость в больших мостах с длинными пролетами.

Стационарные мосты европейского типа не подходили здесь ввиду отсутствия денег и квалифицированной рабочей силы. В связи с этим возникла насущная потребность в длинных (и дешевых) деревянных фермах, которые были бы по силам обычным плотникам. Поскольку их постройка была потенциально доходным делом, а американцы - народ чрезвычайно находчивый, создается впечатление, будто в XIX в. чуть ли не каждый американец приложил руку к изобретению мостовых ферм. Вы можете обнаружить в учебниках немалое количество разновидностей мостовых ферм, конструкции которых лишь незначительно отличаются друг от друга, но зато каждая из ферм носит имя ее изобретателя. Нет нужды детально рассматривать их все, так как принципы работы этих конструкций весьма сходны, но несколько типов заслуживают внимания.

Одной из первых появилась ферма Больмана (рис. 104), она получила в Америке широкое распространение благодаря скорее политическим, чем техническим талантам ее создателя. Больману каким-то образом удалось убедить американское правительство в том, что его конструкция фермы "единственно надежная" и одно время ее там внедряли даже принудительно. Последнее, возможно, не столь курьезно, как могло бы показаться непосвященному: профессиональные инженеры уже давно исходят из убеждения, что техническое невежество американских конгрессменов не имеет границ[84].

На рис. 104 показана упрощенная ферма Больмана с тремя секциями. На самом деле это было весьма сложное сооружение с гораздо большим числом секций. Кроме того, работающие на растяжение части конструкции были без какой-либо нужды непомерно удлинены.

Рис. 104. Ферма Больмана.

Ферма Финка (рис. 105), используемая в тех же целях, состояла из более коротких деталей и на практике оказалась гораздо лучше. Если в нижней части фермы Финка проложить сплошную балку, она станет фермой Пратта или Хова (рис. 106). Точно такую же конструкцию обычно используют и в традиционном биплане. Ферма Пратта-Хова одинаково хорошо работает при воздействии нагрузки и сверху, снизу, то есть, можно сказать, она одинаково хорошо ведет себя и с точки зрения выгибания, и с точки зрения провисания. Далее, если использовать детали, которые могут работать как на сжатие, так и на растяжение, то можно упростить конструкцию такой фермы, получив в результате ферму Уоррена (рис. 107). Именно эта ферма особенно часто используется в конструкциях, сделанных из обычного стального проката.

Рис. 105. Ферма Финка.

Рис. 106. Ферма Пратта - Хова.

Рис. 107. Ферма Уоррена.

Рис. 108. Консольный мост с центральной секцией в виде шарнирно опертой балки.

До сих пор мы говорили о мостах как о шарнирно опертых балках, каковыми большинство из них, конечно, и является. Однако в ряде случаев в конструкциях мостов работают и консоли. Во времена деревянных конструкций они были не очень популярны, но теперь стальные и железобетонные мосты такого типа получили широкое распространение. Особенно часто железобетонные консольные мосты используются над автострадами. Обычно они имеют центральную секцию, выполненную в виде балки, по концам шарнирно опертой на две консоли (рис. 108). Такая конструкция менее чувствительна к взаимному смещению элементов. Есть мосты, в которых выступающие с двух сторон консоли встречаются посередине.

Во времена приверженности к очень длинным железнодорожным мостам было модным строить их в виде огромных стальных консолей. Наиболее известный мост такого типа -это железнодорожный мост через Форт[85], который был закончен в 1890 г. Это был первый большой мост, построенный из мартеновской стали, вес его составлял 51 тыс. т.

Автомобильные мосты требуют меньшей жесткости, чем железнодорожные, поэтому большинство современных мостов - подвесные. Автомобильный мост через Форт, который имеет такую же длину, как и расположенный рядом железнодорожный, построен в 1965 г. На его сооружение пошло только 22 тыс. т. стали.

(обратно)

Напряженное состояние балок

Теперь нам ясно, что фермы и балки играют чрезвычайно важную роль в нашей жизни и несут на себе немалую долю мирских тяжестей. Но пока мы не совсем хорошо представляем себе, как они с этим справляются, как распределены в них напряжения и деформации и что же на самом деле определяет их несущую способность. Мы уже говорили, что решетчатая ферма и сплошная балка с точки зрения назначения почти всегда взаимозаменяемы. Естественно предположить, что и распределение напряжений у них должно быть весьма схожим. Но на примере решетчатой фермы легче понять, что происходит в балке под действием нагрузки.

Консоль же проще рассматривать, чем шарнирно опертую балку, хотя, как мы видели (см. рис. 102), оба эти случая тесно связаны.

Поэтому рассмотрим ферму в виде консоли, один конец которой заделан в стену, а к другому, свободному, концу приложена какая-то сила W. Давайте начнем с некоего "зародыша" фермы, который представляет собой треугольную конфигурацию, показанную на рис. 109. В этом случае груз Wудерживается от падения направленной вверх компонентой силы натяжения наклонного элемента 1. Сила сжатия в горизонтальном элементе 2 может действовать только горизонтально, поэтому она не вносит непосредственного вклада в удерживание груза. Однако работают и те элементы, которые нагружены горизонтально направленными силами, и элемент 2 играет хотя и косвенную, но чрезвычайно важную роль. в работе всей конструкции, противодействуя, "складыванию" фермы, то есть делая консоль консолью.

Рис. 109 - 111.

Теперь добавим еще одну секцию фермы, как показано на рис. 110. Ясно, что теперь груз поддерживается совместным действием направленных вверх компонент сил растяжения в элементе 1 и сжатия в элементе 3. Элемент 4, конечно, растянут, но, подобно элементу 2 (который по-прежнему сжат), он не вносит непосредственного вклада в поддержание груза, хотя без него ферма не будет работать.

Если мы построим ферму из нескольких секций (рис. 111), общая ситуация практически не изменится: диагональные элементы 1 и 5 растянуты, а 3 и7 сжаты. Опять же именно диагональные элементы непосредственно удерживают нагрузку. Взятые вместе, они сопротивляются тому, что называют сдвигом. О сдвиге мы должны будем говорить подробнее в следующей главе. Между тем можно заметить, что силы, действующие в упомянутых диагональных элементах, равны между собой. Это остается верным независимо от длины консоли и числа составляющих ее секций.

Однако это не так для горизонтальных сил. Сила сжатия в элементе 2 больше, чем в элементе 6, и точно так же растягивающее усилие в элементе 4больше, чем в элементе 8. Чем длиннее мы делаем консоль, тем больше сжимающее усилие в элементе 2 и растягивающее - в элементе 4. При очень большой длине фермы горизонтальные сжимающие усилия и растягивающие усилия вблизи места заделки могут оказаться весьма значительными. Иными словами, такая консоль разрушится скорее всего возле основания, что в общем довольно очевидно. Кажется парадоксальным, однако, что самые большие усилия возникают в элементах, которые не дают прямого вклада в поддержание нагрузки.

На рис. 111 действующая вниз нагрузка, или "перерезывающая сила", непосредственно воспринимается, как мы говорили, зигзагообразной конфигурацией диагональных элементов 1, 3, 5, 7. Но ничто не мешает усложнить эту диагональную решетку, введя дополнительные наклонные элементы, которые будут работать таким же образом, как и уже имеющиеся. Обычно по тем или иным причинам так часто и делают (рис. 112).

Рис. 112. Сдвигу одинаково хорошо может противостоять как решетка, так и сплошная балка.

То же самое нередко можно встретить и в самой природе. Туловище и грудную клетку большинства позвоночных можно рассматривать как своего рода шарнирно опертую балку. Это достаточно очевидно на примере лошади. Кости ее позвоночника и ребра представляют собой сжатые элементы довольно хитроумной фермы Финка (рис. 105 и 113), а пространство между ребрами перекрещено сетью мышц, которые располагаются под углом примерно +45° к ребрам.

Рис. 113. Скелет лошади. Многие позвоночные животные представляют собой нечто вроде фермы Финка, в которой мышцы и сухожилия образуют довольно сложную систему диагональных растяжек между ребрами.

Следующим шагом в развитии инженерных конструкций было заполнение площади внутри фермы не решеткой, а того или иного вида пластинами или стенками из таких материалов, как сталь или фанера. Балки такого типа могут иметь разнообразную форму, но наиболее известна обычная двутавровая балка (рис. 114).

Рис. 114. Двутавровая балка. Во многих балках касательные напряжения воспринимаются сплошными стенками, соответствующие им сжимающие и растягивающие напряжения по-прежнему направлены под углом +45° к оси балки.

Назначение вертикальной стенки в этой балке примерно то же, что и зигзагообразной решетки в ферме: распределение усилий в диагональных стержнях фермы и напряжений растяжения - сжатия в стенке в общем схожи. Таким образом, в двутавровой балке ее "полки" (горизонтальные плоскости снизу и сверху) нагружены продольными (горизонтальными) напряжениями растяжения или сжатия, в то время как "стенка" между полками нагружена главным образом вертикальной перерезывающей силой.

(обратно)

Продольные напряжения в изгибаемой балке

Как мы уже говорили, напряжения сжатия и растяжения, действующие в направлении продольной оси балки, часто гораздо больше и гораздо опаснее, чем напряжения сдвига, или касательные напряжения, даже несмотря на то, что они сами по себе не вносят прямого вклада в сопротивление внешней нагрузке. В случае шарнирно опертых балок, с которыми чаще всего приходится иметь дело на практике, как правило, именно продольные напряжения приводят к разрушению, и поэтому инженер начинает расчет балки с вычисления именно этих напряжений.

Хотя двутавровые балки (рис. 114) встречаются очень часто, вообще говоря, балка может иметь поперечное сечение любой формы, и теория балок, как правило, рассматривает простейшие из них . Распределение продольных напряжений по сечению балки, по существу, очень похоже на распределение напряжений в сечении каменной стены (см. гл. 8) с той существенной разницей, что каменная кладка не может выдерживать растягивающих напряжений.

Каждая балка под действием приложенной к ней нагрузки должна прогибаться, принимая изогнутую, искривленную форму. Материал на вогнутой, или сжатой, поверхности искривленной балки будет претерпевать деформацию сжатия, укорачиваться. Материал на выпуклой, или растянутой, поверхности будет удлиняться (рис. 115).

Рис. 115. Распределение напряжении по высоте балки.

Если материал балки подчиняется закону Гука, то распределение напряжений в поперечном сечении балки будет изображаться прямой линией и будет существовать некоторая нулевая точка, в которой материал не сжат и не растянут, а напряжение равно нулю. Эта точка лежит на так называемой нейтральной оси балки. Знать расположение нейтральной оси весьма важно и, к счастью, его легко определить. Довольно просто доказать, что нейтральная ось должна проходить через "центр тяжести" поперечного сечения балки. Для простых симметричных сечений, таких, как прямоугольник, круг или сечения трубы и двутавровой балки, нейтральная ось лежит посредине балки на равном расстоянии от ее верхней и нижней поверхностей. Для несимметричных сечений, таких, как сечения железнодорожного рельса, корпус судна или крыло самолета, требуются не очень сложные расчеты.

Из рис. 115 ясно, что продольные напряжения возрастают прямо пропорционально расстоянию от нейтральной оси. В теории изгиба балок это расстояние обычно обозначается у (См. приложение 2). Стремясь повысить эффективность конструкции, которая может связываться, например, с ее стоимостью, весом материала, энергетическими затратами при обмене веществ (метаболической стоимостью), мы "не станем держать котов, которые не ловят мышей". Другими словами, нам нерационально заполнять сечение материалом, который не несет никакой или несет очень маленькую нагрузку. Это означает, что материал следует распределить так, чтобы возможно меньшая его часть находилась вблизи нейтральной оси и возможно большая - вдали от нее. Конечно, приходится оставлять какое-то количество материала и вблизи нейтральной оси, чтобы противостоять сдвиговым, или касательным, усилиям, но практически для этого его не нужно слишком много. Обычно достаточно довольно тонкой стенки (рис. 116). Именно поэтому стальные балки имеют обычно двутавровое (рис. 114) или Z-образное сечение.

Рис. 116. Напряжение при изгибе в точке на расстоянии "y" от нейтральной оси есть s = My/l, где М - изгибающий момент, l - момент инерции поперечного сечения (подробнее см. приложение 2).

Подобные профили довольно легко изготавливать на прокатных станах из малоуглеродистой стали. Стальной прокат сегодня можно производить практически любых размеров. Преимущество Z-образных профилей перед двутавровыми состоит в том, что к их полкам легко клепать стальной лист. Именно поэтому они широко используются в качестве шпангоутов судовых корпусов. В случаях, если простые профили не подходят, применяют балки коробчатого сечения. Впервые их применил Стефенсон в 1850 г. при строительстве моста "Британия"[86] через пролив Менай (рис. 117 и 145). С появлением водостойких клеев и прочной фанеры коробчатые балки стали широко использоваться в различных деревянных конструкциях, в частности в лонжеронах крыла деревянных планеров (рис. 139).

То же самое относится и к листам. Тонкий металлический лист под действием изгибающих нагрузок легко гнется. Получить большее поперечное сечение такого листа, не увеличив особенно его веса, позволяет гофрированная прокатка[87]. Раньше гофрированный прокат использовался для внешней обшивки кораблей и самолетов, в частности Юнкере применил его в свое время для моноплана. Недостатки гофрированных листов достаточно очевидны и теперь для создания большей прочности и жесткости обшивки в судостроении и самолетостроении применяются приклепанные или приваренные металлические уголки, упрятанные внутрь обшивки, - стрингеры.

Во всех этих случаях нагрузка обычно действует на балку только в одном направлении, и форма поперечного сечения балки оптимизируется, исходя именно из этого условия. В некоторых же инженерных и в большинстве биологических конструкций нагрузка может действовать в различных направлениях. Приблизительно так распределяются нагрузки в фонарном столбе, ножке стула, бамбуке или кости ноги. В этих случаях надежнее ведут себя круглые полые трубы. Промежуточный случай представляют собой мачты яхт типа "Бермуды". Для них используются трубы овального или грушевидного сечения. Это делается вовсе не для того, чтобы уменьшить сопротивление воздуха, как думают многие, а потому, что закрепить современную мачту в направлении вдоль палубы гораздо труднее, чем в поперечном направлении, и форма сечения мачты обеспечивает большую жесткость и прочность именно в направлении нос - корма.

Рис. 117. Железнодорожный мост "Британия" (1850) представляет собой стальную балку коробчатого сечения. Поезда идут внутри балки. При строительстве пришлось преодолеть большие трудности, связанные с потерей устойчивости тонких листов железа. На переднем плане группа инженеров того времени: слева за столом сидит Стефенсон, крайний справа - Брюнель.

(обратно) (обратно)

Глава 11

Тайны сдвига и кручения, или "Поларис" и вечерние туалеты

Вертись, кружись, веретено -

Со счастьем горе сплетено;

С покоем - буря, страх - с мечтой

Сольются в жизни начатой.

Гай Маннеринг

Вальтер Скотт

Помнится, одно из книжных обозрений Дороти Паркер начиналось словами: "Эта книга рассказала мне о принципах бухгалтерского учета больше, чем мне хотелось бы знать". Осмелюсь предположить, что поведение материалов и конструкций при сдвиге многие из нас склонны оставить специалистам. Кажется, что с растяжением и сжатием можно еще справиться, но относительно сдвига уверенности такой нет. Вдобавок к этому, если в учебниках по сопротивлению материалов говорится о сдвиге, то непременно в связи с какими-нибудь коленчатыми валами или балками особенно хитрых типов. После этих учебников, несмотря на их несомненную пользу, предмет нередко теряет всякую привлекательность и вдобавок при этом как-то ускользает от внимания тот простой факт, что напряжения сдвига и деформации сдвига возникают не только в балках и коленчатых валах, а практически во всех предметах, с которыми нам приходится иметь дело, и иногда это приводит к неожиданным последствиям. Именно из-за них дают течь суда, шатаются столы, в неожиданных местах вытягивается одежда. Если бы не напряжения сдвига, жить было бы легче и приятней не только инженерам, но и биологам, хирургам, плотникам-любителям и даже тем, кто выпускает болтающиеся чехлы для мебели.

Если растяжение - это когда тянут, сжатие - когда сдавливают, то сдвиг - это когда происходит взаимное проскальзывание. Другими словами, напряжение сдвига служит мерой тенденции к скольжению одной части твердого тела относительно другой. (Обратите внимание на скольжение карт в брошенной на стол колоде или ковра, когда его выдергивают у вас из-под ног.) Почти всегда сдвиг возникает и при скручивании, например в лодыжке, рулевой колонке или любой другой детали механизма. В условиях сдвига или кручения материалы обычно ведут себя довольно просто. Но прежде чем перейти к обсуждению особенностей этого поведения, нам необходимо договориться о терминологии. Поэтому мы начнем с нескольких определений.

(обратно)

Терминология

Упругие свойства вещества при сдвиге очень похожи на его свойства при сжатии и растяжении, а такие понятия, как напряжение сдвига и деформация сдвига, аналогичны и не сложнее соответствующих понятий в случае растяжения.

Напряжение сдвига, или касательное напряжение, -τ. Как мы уже говорили, касательное напряжение служит мерой тенденции одной части твердого тела скользить относительно другой его части, как это схематически показано на рис. 118, а. Следовательно, если на поперечное сечение материала, имеющее площадь А, действует сдвигающая сила Р, то напряжение сдвига в некоторой точке материала будет[88]: касательное напряжение = (перерезывающая сила / площадь ) = Р / А = τ.

Касательное напряжение τ имеет ту же размерность, что и растягивающее напряжение, например МН/м2 (кгс/мм2).

Деформация сдвига - γ. Все твердые тела при действии напряжения сдвига деформируются аналогично тому, как это происходит и при растяжении. Однако в этом случае деформация представляет собой искажение углов и измеряется поэтому, как все углы, в градусах или радианах, чаще в радианах (рис. 118, б). Радиан, конечно, не имеет размерности, будучи просто числом или отношением двух длин. Мы будем обозначать деформацию сдвига буквойγ: подобно относительной деформации растяжения, обозначаемой ε, γ - безразмерное число.

Рис. 118. Напряжение сдвига, или касательное напряжение, и деформация сдвига.

а - касательное напряжение = (перерезывающая сила / площадь) = Р / А = τ.

б - деформация сдвига - это угол γ, на который искажается прямой угол в результате действия касательного напряжения τ.

Рис. 119. Кривая деформирования при сдвиге похожа на соответствующую зависимость при растяжении.

Тангенс угла наклона прямолинейной части равен модулю сдвига: G = τ/γ.

Для таких твердых тел, как металл, бетон или кость, упругая деформация сдвига обычно меньше 1° (1/57 радиана). При больших деформациях материалы этого типа либо разрушаются, либо испытывают необратимые пластические деформации - текут подобно сливочному маслу.

Однако такие материалы, как резина, текстильные ткани или мягкие биологические ткани, могут испытывать гораздо большие упругие и обратимые деформации сдвига - примерно до 30-40°. Для жидкостей и вязких материалов вроде патоки, крема или пластилина деформации сдвига не ограничены, но они и необратимы.

Модуль сдвига - G. Как и при растяжении, при малых и умеренных напряжениях большинство твердых тел следуют закону Гука при сдвиге. Так, построив график зависимости напряжения сдвига τ от деформации γ, мы получим кривую, которая по крайней мере на ее начальном участке близка к прямой линии (рис. 119). Наклон этой прямой характеризует сдвиговую жесткость материала; тангенс угла наклона называется модулем сдвига. Он обозначается G. Таким образом,

модуль сдвига = (касательное напряжение / деформация сдвига) = τ/γ=G

Модуль сдвига G аналогичен по смыслу модулю Юнга Е и, подобно последнему, имеет размерность единиц напряжения, например МН/м2 (кгс/мм2)[89].

(обратно)

Стенка балки в условиях сдвига - изотропные и анизотропные материалы

Как мы уже видели в предыдущей главе, хотя в верхней и нижней полках балки (или верхних и нижних стержнях фермы) возникают большие растягивающие или сжимающие напряжения (или усилия в стяжках), которые уравновешивают направленную вниз нагрузку и позволяют балке выполнять возложенную на нее миссию, - это напряжения сдвига, возникающие в стенке балки, соединяющей верхнюю и нижнюю ее полки. Стенка балки обычно представляет собой сплошную металлическую пластину, в ферме те же самые функции выполняет какая-либо решетчатая структура.

Так как между материалом и конструкцией нельзя провести четкой грани, то и здесь не очень важно, чем воспринимается перерезывающая сила в балке, сплошной ли стенкой или же решеткой, которая может быть из стержней, проволоки, деревянных брусьев или чего-либо другого. Правда, одно важное отличие здесь есть. Если стенка сделана, скажем, из металлической пластины, то не имеет никакого значения, под каким углом она была вырезана из большого листа, так как свойства металла по всем направлениям одинаковы. Такие материалы, а к ним относятся металлы, кирпич, бетон, стекло и большинство видов камня, называются изотропными, что по-гречески означает "одинаковые во всех направлениях", Тот факт, что металл изотропен (или почти изотропен) и имеет одинаковые по всем направлениям свойства, упрощает жизнь инженеров и объясняет их особое пристрастие к металлам.

Рассмотрим теперь стенку в виде решетки. Очевидно, что ее стержни должны располагаться под углом около +45° к оси балки. В противном случае стенка не будет иметь достаточной сдвиговой жесткости (рис. 120 и 121), под нагрузкой решетка сложится, и ферма скорее всего разрушится. Материалы, поведение которых напоминает поведение нашей решетки, называются анизотропными (или иногда аллотропными), что по-гречески означает "различные в различных направлениях".

Рис. 120. Сдвиг приводит к сжатию и растяжению под углом +45° к направлению сдвига.

Рис. 121. Системы, подобные той, что изображена справа, являются жесткими на сдвиг, а системы, подобные изображенной слева, плохо ему сопротивляются.

Дерево, ткани и почти все биологические материалы анизотропны, причем каждый по-своему; это обстоятельство весьма усложняет жизнь, и не только инженерам. Ткань для одежды является самым распространенным рукотворным материалом, и она в высшей степени анизотропна. Как мы уже не раз говорили, различия между материалом и конструкцией довольно туманны, и ткань, хотя портные и называют ее материалом, на самом деле представляет собой конструкцию, состоящую из отдельных нитей, перекрещивающихся под прямым углом, и ведет себя при действии нагрузкой почти так же, как и решетчатая стенка балки или фермы.

Взяв в руки квадратный кусок обыкновенной ткани - это может быть носовой платок, - вы увидите, что в зависимости от направления приложенной растягивающей силы она деформируется совершенно по-разному. Если вы тянете строго вдоль нитей основы или утка[90], ткань почти не растягивается; другими словами, ее жесткость на растяжение в этих направлениях велика. Более того, внимательно присмотревшись, вы заметите, что при этом сужение ткани в поперечном направлении тоже невелико (рис. 122), так что коэффициент Пуассона (о котором мы говорили в гл. 7 в связи с артериями) мал.

Рис. 122. При растяжении ткани параллельно нитям основы или утка материал оказывается жестким и его поперечное сокращение незначительно.

Но если вы теперь потянете ткань под углом 45° к направлению нити, то есть по диагонали, или, как говорят портные, "по косой", то она растянется гораздо больше; можно сказать, что в этом случае модуль Юнга весьма невелик. Одновременно произойдет большое поперечное сокращение, так что в этом направлении величина коэффициента Пуассона станет гораздо больше, а он может достигать величин порядка 1 (рис. 123). В целом же, чем более свободно соткана ткань, тем больше будет различие между ее поведением в диагональном и продольно-поперечном направлениях.

Рис. 123. Если ткань растягивается по диагонали, то материал легко поддается растяжению, коэффициент Пуассона для этого направления велик и соответственно поперечное сокращение значительно.

Думаю, что немногие слышали слово "анизотропия", но такое поведение тканей на протяжении веков, должно быть, было известно почти каждому. Довольно удивительно, однако, что анизотропные свойства тканей до недавнего времени не только не использовались в технике и обыденной жизни, но даже не были осознаны.