Использование ферментных препаратов

Ферментные препараты применяются в различных отраслях промышленности, в том числе и пищевой. Так, в хлебопечении используются амилолитические ферменты, амилазы, которые способствуют получению дополнительного количества сбраживаемых сахаров и интенсификации процессов брожения. Образовавшиеся сахара также участвуют в образовании аромата и цвета хлебобулочных изделий – в реакции мелаидинообразования.

Препараты амилаз нашли широкое применение в технологиях получения различных паток и глюкозы из крахмала. Глюкозо-изомераза используется для изомеризации глюкозы во фруктозу (получают фруктозный сироп).

Комплексные ферментные препараты, содержащие активные протеазы и α-амилазу, применяют при производстве мучных кондитерских изделий с целью ускорения процесса брожения и корректировки физических свойств клейковины муки, изменения реологических свойств теста, ускорения его «созревания».

Цитолитические ферментные препараты используются при производстве плодово-ягодных соков, вин и безалкогольных напитков, для повышения выхода сока и его осветления.

В пивоварении с целью частичной замены солода используют ферментные препараты микробного происхождения.

Ферментные препараты протеаз (папаин, фицин, бромилин) нашли широкое применение для тендаризации (умягчения) мяса.

Ферментные препараты находят широкое применение и в молочной промышленности – изготовление сыров, йогуртов, кумыса и т.д.

Иммобилизованные ферменты

Обычные ферменты используются в различных биотехнологических процессах только в одном производственном цикле – одноразово.

Достижения молекулярной биологии, биохимии, органического синтеза и т.д. позволило создать ферментные препараты многоразового использования – иммобилизованные ферменты.

Иммобилизованные ферменты (или нерастворимые ферменты) – это искусственно полученный комплекс фермента с нерастворимым в воде носителем. Иммобилизация (от латинского immobilis – «неподвижный») осуществляется: путём физической адсорбции фермента на нерастворимом материале; включения фермента в ячейки геля, из которого фермент не может освободиться, в то же время ячейки позволяют проникать низкомолекулярному субстрату к ферменту; а также ковалентным связыванием фермента с носителем и т.д.

В качестве адсорбентов используют стекло, гидроксилаппатит, целлюлозу. Для включения фермента в ячейки геля используют разнообразный гелеобразующий материал, чаще всего полиакриламидный гель. В качестве материала для ковалентного связывания ферментов применяют полипептиды, производные стирола, полиакриламид, нейлон и т.д. При ковалентном связывании ферменты находятся на химическом «поводке» у нерастворимого носителя.

При получении иммобилизированных ферментов принимают все меры предосторожности для сохранения активности фермента (не затронутьь группировки активного центра).

Иммобилизированные ферменты обычно менее активны чем исходные, поскольку связывание с носителем вносит некоторые конформационные изменения в молекулу фермента, а следовательно, в его активный центр.

Иммобилизированные ферменты обладают многими преимуществами по сравнению с обычными препаратами ферментов. К ним относятся: более низкая стоимость, связанная с возможностью их многоразового использования; повышенная стабильность при хранении и использовании; отсутствие примесей фермента в продуктах реакции; возможность организации непрерывно-поточного процесса катализа и более строгого контроля за ним.

Несмотря на большие потенциальные возможности использования иммобилизованных ферментов в производстве, в настоящее время реализованы лишь немногие, например:

- разделение изомеров аминокислот, получение сиропов с высоким содержанием фруктозы с использованием глюкозоизомеразы, получение безлактозного молока с использованием β-галактозидазы.

С помощью иммобилизированных ферментов осуществляется промышленный синтез некоторых аминокислот, витаминов и гормонов; разработаны высокочувствительные методы анализа некоторых лекарств. Протеолитические ферменты (трипсин, химотрипсин), иммобилизированные на марлевых салфетках, тампонах, применяют в хирургической практике для очищения гнойных ран, омертвевших тканей.

Витамины

Витамины (от лат. vita – жизнь), низкомолекулярные органические соединения различной химической природы, необходимые в незначительных количествах для нормального обмена веществ и жизнедеятельности живых организмов. Многие витамины – предшественники кофакторов, в составе которых участвуют в различных ферментативных реакциях.

Все животные и растения нуждаются почти во всех известных витаминах, и поэтому растения, а также некоторые животные обладают способностью синтезировать те или иные витамины. Однако человек и ряд животных, по-видимому, в процессе эволюции утратили эту способность.

Потребность в витаминах ничтожна. Человек в среднем должен ежедневно потреблять 600 г, в пересчёте на сухое вещество питательных основных веществ и только 0,1-0,2 г, витаминов.

Длительное употребление пищи, лишённой витаминов, вызывает заболевания (гипо- и авитаминозы).

а) авитаминоз – комплекс симптомов, которые развиваются в результате длительного, полного отсутствия одного витамина;

б) полиавитаминоз – отсутствия нескольких витаминов;

в) гиповитаминоз – состояние, которое характеризуется недостаточным поступлением витаминов;

г) гипервитаминоз – комплекс физиологических и биохимических нарушений, возникающих вследствие длительного и избыточного введения в организм любого из витаминов.

История изучения

Ещё в 17 веке имелись отдельные сведения учёных о том, что у человека при длительном, скудном и однообразном питании могут возникать опасные болезни (цинга, рахит, полиневрит, куриная слепота и др.), часто заканчивающиеся смертельным исходом. Во второй половине 19 века у учёных не было сомнений, что сходные с человеком симптомы болезней наблюдаются у ряда домашних животных. Для выяснения причин возникновения этих опасных болезней был проведён ряд исследований, в основе которых лежало применение различных искусственно составленных пищевых смесей. Одна из первых попыток кормления животных искусственными пищевыми смесями была предпринята российским учёным Н. И. Луниным. В 1881 году он показал, что длительное кормление мышей смесью экстрагированных из молока белков, жиров и углеводов с добавлением минеральных солей и воды приводило к гибели животных, в то время как контрольная группа, получавшая просто молоко, нормально развивалась. На основании этих опытов Лунин пришёл к заключению, что для поддержания нормального физиологического состояния организма необходимы какие-то неизвестные вещества, содержащиеся в молоке и отсутствующие в искусственной пищевой смеси. Однако это заключение получило общее признание много позднее, когда были открыты вещества, на наличие которых указал Лунин.

В 1912 году польский учёный К. Функ выделил из рисовых отрубей вещество, излечивающее заболевание бери-бери, и назвал его витамином (от лат. vita – жизнь и…амин), так как решил, что характерным признаком подобных веществ является наличие у них аминогруппы (–NH2). Позднее оказалось, что аминогруппа отнюдь не является характерной для этих веществ. Некоторые из них могут совсем не содержать азота, однако термин «витамины» получил широкое распространение и упрочился в науке.

Исследования Функа послужили началом всестороннего широкого изучения витаминов. Ввиду важного физиологического значения витаминов к их изучению активно привлекались учёные разных специализаций – физиологи, химики, биохимики, врачи-клиницисты и др. В результате витаминология (учение о витаминах) выросла в большую, бурно развивающуюся отрасль знаний.

Так как первоначально химическая природа витаминов была неизвестна, и их различали только по характеру физиологического действия, было предложено обозначить витамины буквами латинского алфавита (A, B, C, D, E, K). В ходе изучения витаминов оказалось, что некоторые витамины, в частности, витамин B, в действительности являются группой витаминов, которые были обозначены следующим образом: B1, B2, B3, B4, B5, B6 и т. д. Из известных на сегодняшний день приблизительно 500 каротиноидов около 60 рассматриваются как предварительные стадии синтеза витамина А, а около 110 считаются даже более эффективными, чем сам витамин. Известны по четыре разновидности витаминов С и Д, а витамина Е – десятки разновидностей.

По мере выяснения химической структуры витаминов и их биохимической роли стало принятым использовать наряду с буквенным обозначением витаминов и их химические названия.

Классификация витаминов

В настоящее время все витамины делят на 2 группы: водорастворимые и жирорастворимые. К витаминам, растворимым в воде, относят: витамины группы B – B1 (тиамин, аневрин), B2 (рибофлавин), PP (никотиновая кислота, никотинамид, ниацин), B6 (пиридоксин, пиридоксаль, пиридоксамин), B12 (цианкобаламин); фолиевая кислота (фолацин, птероиглютаминовая кислота); В3 – пантотеновая кислота; биотин (витамин H); C(аскорбиновая кислота). К витаминам, растворимым в жирах, относятся: витамин A (ретинол); D (кальциферолы); E (токоферолы); K (филлохиноны). Так как незаменимые жирные кислоты по своему физиологическому действию сходны с витаминами, их относят иногда к жирорастворимым витаминам (витамин F). К витаминоподобным веществам также относят холин и инозит, поскольку они также являются незаменимыми компонентами пищи. Однако так как они не участвуют в обменных реакциях, а участвуют в построении структур клетки, их ещё называют витаминоидами. Последнее время к витаминоидам относят противоязвенный фактор (витамин U), пангамовую кислоту (витамин B15), а также липоевую, оротовую, парааминобензойную кислоты и карнитин, коэнзим Q (убихинон).

Жирорастворимые витамины могут накапливаться в организме, откладываясь про запас в жировой ткани, и затем по мере необходимости могут использоваться.

Жирорастворимые витамины

Витамины группы А

Витамин А (ретинол) известен в виде трех витаминов: А1, А2 и цис-формы витамина А1. С химической точки зрения витамин А1 представляет собой 20-атомный циклический непредельный одноатомный спирт, состоящий из шестичленного кольца (β-ионона), двух остатков изопрена и первичной спиртовой группы.

Витамин А2 отличается от А1 наличием дополнительной двойной связи в кольце β-ионона.

Витамины группы A существуют в виде стереоизомеров, несколько отличающихся по биологической активности. Биологическая активность витамина А2 в два раза меньше, чем витамина А1.

 

Витамины группы A хорошо растворимы в жирах и жировых растворителях: хлороформе, бензоле, ацетоне, эфире, спиртах и др. В организме человека и животных витамины группы А легко окисляются под действием специфических ферментов с образованием соответствующих цис-транс-альдегидов – ретиналей, т.е. альдегидов витамина А. Витамин А может откладываться в печени в форме более устойчивых сложных эфиров с уксусной или пальмитиновой кислотой. Запас этот при необходимости используется организмом.

Признаки недостаточности витамина A у человека и животных: торможение роста, похудание и общее истощение организма, сухость кожи, ксерофтальмия («сухие глаза»), сухость слизистых оболочек, стерильность самцов, «куриная слепота». Последняя используется для ранней диагностики недостаточности витамина А. «Куриная слепота» выражается в том, что организм теряет способность различать предметы в сумерках, хотя больные днем видят нормально.

Помимо гипо- и авитаминоза A известны случаи гипервитаминоза А. Жители Севера знают, что нельзя есть печень белого медведя, тюленя, моржа, в которых высокое содержание витамина А. При гипервитаминозе А наблюдается воспаление глаз, выпадение волос, общее истощение организма. При этом теряется аппетит, наблюдаются головные боли, бессонница, тошнота и рвота.

В растениях витамин А не встречается, но многие растения содержат провитамин А – каротиноиды, которые в организме человека и животных ферментативным путем могут превращаться в витамин А. Каротиноиды впервые выделены из моркови (от лат. «карота» – морковь). Наиболее изучены три типа каротиноидов: α-, β- и γ-каротины, отличающиеся как по химическому строению, ак и по биологической активности. Наибольшей биологической активностью обладает β-каротин, так как он содержит два β-иононовых кольца и при его гидролитическом распаде под действием фермента каротиназы (каротин-диоксигеназы) образуются две молекулы витамина А.

Схема превращения провитамина А) в ретинол (витамин А)

При гидролитическом расщеплении α- и γ-каротина образуется по одной молекуле витамина А, так как эти провитамины содержат по одному
β-иононовому кольцу. Степень усвояемости каротиноидов и свободного витамина А зависит от содержания жиров в пище. β-каротин придает моркови, тыкве, батату, апельсинам, персикам и другим овощам и фруктам характерный для них цвет.

Каротиноиды наряду с хлорофиллом содержатся также во всех зеленых частях растениях.

Из плодов довольно высокое содержание каротина лишь в облепихе и рябине, затем в черной смородине, в цитрусовых, а также в персиках и гораздо меньше его в вишне, землянике, малине. В других плодах и овощах содержание каротина не превышает 0,2 мг на 100 г или он содержится в следовых количествах.

В корнеплодах моркови на долю β-каротина приходится около 80 %, остальное – на долю α-каротина. В верхней, связанной с листьями, части корнеплода содержание каротина всегда выше, чем в нижней части, а в периферийных тканях больше, чем во внутренних. Сорта моркови сильно отличаются по содержанию каротина: чем меньше в корнеплоде доля сердцевины, тем выше общее содержание каротина. Количество каротина коррелирует с окраской корнеплода: в сортах с ярко-оранжевой окраской каротина больше, чем в сортах с более бледной окраской. Хорошим источником каротина являются некоторые сорта тыквы, шиповник, перец.

Витамин А, как и каротин, устойчив к температуре в процессе варки, но чувствителен к свету и кислороду воздуха, поэтому продукты, содержащие этот витамин, теряют его при неправильном хранении. Прогоркание жиров также сопровождается разрушением витамина А и каротиноидов, присутствие витаминов С и Е предохраняет витамин А от разрушения. Витамин A и каротин включаются в обменные процессы только в том случае, если пища, содержащая их, одновременно содержит жир. Поэтому продукты, богатые витамином A, рекомендуется готовить с растительным маслом.

Биологическая роль

Благодаря наличию в молекуле двойных связей, витамин A может участвовать в окислительно-восстановительных реакциях, образуя при этом пероксиды, которые, в свою очередь, повышают скорость окисления других соединений. Витамин A влияет на барьерную функцию кожи, слизистых оболочек, на проницаемость клеточных мембран и биосинтез их компонентов. Действие витамина A связывают с его вероятной причастностью к синтезу белка. Витамин A, соединяясь с белком опсином, образует зрительный пигмент родопсина, который участвует в процессе световосприятия.

Витамин A широко распространен в природе. Он содержится только в продуктах животного происхождения: в печени крупного рогатого скота, свиней, птиц, в желтке яиц, сливочном масле, мясе и рыбе. Особенно много свободного витамина A в жирах печени морского окуня (35%), трески, палтуса, акулы и тунца.

Суточная потребность витамина А для взрослого человека составляет от 1 до 2,5 мг, а β-каротина – от 2 до 5 мг.

Витамин А необходим для нормального роста и дифференцировки тканей. Он выполняет роль протектора при рентгеновском облучении, регулирует процессы разложения, обладает антиинфекционным действием, усиливает иммунитет.

Гипервитаминоз – избыток витамина – вызывает воспаление глаз, тошноту, рвоту, выпадение волос.

20.2 Витамины группы D (кальциферол)

Эта группа витаминов представлена в виде нескольких соединений, отличающихся по строению и биологической активности. Для человека и животных активными препаратами являются витамины D2 – эргокальциферол и D3 – холкальциферол. В растениях содержатся провитамины витаминов группы D – фитостерины – метиленциклоартенол, кампестерин, ситостерин, стигмастерин, которые под действием ультрафиолетовых лучей с длиной волны 280...310 нм в организме животных и человека превращаются в витамины группы D. При УФ-облучении эргостерола (выделенного из дрожжей) синтезируется витамин Д2. Предшественником витамина Д3 является холестерин, содержащийся в поверхностных слоях кожи.

С химической точки зрения все эти стерины представляют собой одноатомные ненасыщенные циклические спирты, в основе структуры которых лежит кольцевая система циклопентанпергидрофенонтрена.

Витамины группы D образуются под действием света, фотохимическое расщепление происходит в результате разрыва связи между
9-м и 10-м углеродными атомами кольца В (показано стрелкой) под действием УФ-лучей.

Недостаток витамина D в рационе детей приводит к возникновению рахита, в основе которого лежат изменения фосфорно-кальциевого обмена и нарушение отложения в костной ткани фосфата кальция. Отмечается размягчение костей; кости становятся мягкими и под тяжестью тела принимают уродливые формы.

Недостаточность витамина D у детей вызывается в значительной степени дефицитом ультрафиолетовых лучей, способствующих образованию витамина D в коже из его предшественников. У взрослых дефицит кальциферола вызывает развитие остеомоляции.

Биологическая роль

Хотя витамин сам по себе не обладает биологической активностью, он служит предшественником 1,25-диоксихолекальциферола, который образуется из витамина D в коже, печени, почках, откуда он переносится в другие органы и ткани, главным образом в тонкий кишечник и кости, т.е.
1,25-диоксихолекальциферол выполняет роль гормона – вещества, синтезируемого в одном органе и регулирующего биологическую активность другой ткани (наиболее активно стимулирует сорбцию в кишечнике Са2+, а также фосфата и утилизацию Са2+ при росте костей). Таким образом, витамин D служит предшественником гормона.

 

Преобразование витамина Д3 в 1,25-дигидроксихолкальциферол

Источники

Наибольшее количество витамина D содержится в продуктах животного происхождения: сливочном масле, желтке яиц, печени, жирах, в том числе в рыбьем жире. Из растительных продуктов наиболее богаты провитамином D растительные масла (подсолнечное, оливковое и др.); много витамина D в дрожжах. Для профилактики рахита в детском возрасте кроме полноценною питания, включающего масло, молоко, жиры, мясо и др., рекомендуется применять солнечные ванны, облучение кварцевыми лампами. Витамин D чувствителен к свету и кислороду воздуха.

Суточная потребность в витамине D для детей колеблется от 12 до 25 мкг (1 мкг равен 0,001 мг) в зависимости от возраста, физиологического состояния организма, соотношения солей фосфора и кальция в рационе. Если человек получает достаточную дозу ультрафиолетового облучения (солнечных лучей), у него нет необходимости в дополнительных количествах витамина D. У беременных женщин и кормящих матерей потребность в этом витамине возрастает в связи с повышенным обменом веществ. Гипервитаминоз сопровождается увеличением отложения солей Са в мягких тканях и внутренних органах (почках, печени).

Витамины группы Е

Витамин Е (токоферол) также представляет группу близких по химическому строению соединений. Первоначально из масла пшеничных зародышей и из хлопкового масла было выделено вещество, которое оказалось необходимым для нормального размножения животных, предохраняя их от бесплодия. Отсюда витамин Е получил свое название. Токоферол в переводе с греческого означает: «токос» – потомство и «феро» – нести.

В настоящее время известно 8 природных соединений, обладающих биологической активностью витамина Е. Наиболее известным из них является
α-токоферол.

Молекула токоферолов состоит из ароматического кольца и длинной изопреноидной боковой цепи. С химической точки зрения токоферолы – это производные 2-метил-2(4/, 8/, 2/-триметилтридецил)-хроман-6-ола, или токола.

Молекулы различных токоферолов (α, β, γ и др.) отличаются друг от друга числом и расположением метильных групп в бен­зольном кольце.

Витамин Е: a, b, g-токоферолы

При недостатке витамина Е наблюдаются шелушение кожи, мышечная дистрофия, жировая инфильтрация печени, дегенерация спинного мозга, появление так называемых старческих пятен на руках.

Биологическая роль

Витамин Е – один из самых сильных антиоксидантов. Он предохраняет от окисления в первую очередь полиненасыщенные жирные кислоты и препятствует тем самым образованию вредных для живых организмов свободных радикалов и органических пероксидов. Витамин Е защищает также чувствительный к действию кислорода витамин A от окислительного разрушения, усиливая тем самым снабжение организма витамином А. При недостатке витамина Е наблюдается снижение интенсивности дыхания, так как витамин Е участвует в цепи переноса электронов от восстановленных анаэробных дегидрогеназ. Витамин Е регулирует синтез убихинона (кофермента Q).

Наиболее достоверна роль витамина E в защите жирных кислот в составе липидов клеточных биомембран от окислительного разрушения, нарушающего нормальное функционирование мембранных структур клетки, т.е. выполняет роль «ловушки» свободных радикалов. Витамин Е предохраняет жиры от прогоркания.

Источник

Человек получает достаточное количество витамина E с растительными маслами. Недостаточность его отмечена и некоторых тропических странах, где основным источником пищи являются углеводы, тогда как жиры употребляются в незначительных количествах.

Витамин Е широко распространен в природе. Важнейшим источником витамина Е для человека являются растительные масла (подсолнечное, оливковое, хлопковое, соевое, кукурузное и др.), а также листовые овощи – салат и капуста. Наибольшие количества витамина Е содержатся в пшеничном зерне в зародыше в алейроновом слое: 15,84 и 5,77 мг на 100 г соответственно. В муке содержание витамина Е незначительно: 1,1 мг на 100г. К сожалению, высокое содержание витамина Е в зерновых культурах мало используется в питании человека, так как при технологической переработке зерна в крупу или муку витамин Е переходит в отруби. Суточная потребность в витамине E для взрослых составляет 20...30 мг, при большой нагрузке (беременности, тяжелом физическом труде), а также с возрастом она увеличивается.

Витамины группы К

Витамин K (нафтохинон) представлен двумя соединениями. К группе витаминов K относятся два типа хинонов (витамины К1 и К2) с боковыми цепями, представленными изопреновыми звеньями, в основе циклической структуры которых лежит кольцо 1,4-нафтохинона. Витамин К1 – это филлохинон-4, а витамин К2 – менахинон-6. Витамин К1 впервые выделен из люцерны, витамин К2 – из рыбной муки, где он синтезировался микроорганизмами. В основе циклической структуры обоих витаминов лежит кольцо 1,4-нафтахинона.

Витамин К1 (филлохинон-4) обнаружен в растениях. Он имеет боковую цепь из четырех изопреновых единиц.

Витамин К2 (менахинон-6) обнаружен у животных, он содержит в боковой цепи от шести до девяти изопреновых единиц.

Витамины группы K выдерживают температуру до 120 0С, но разрушаются щелочами, кислотами, а также под действием света и кислорода воздуха.

При авитаминозе K возникают самопроизвольные кровотечения (носовые кровотечения, внутренние кровоизлияния). Кроме этого, любые повреждения кровеносных сосудов при авитаминозе K могут привести к обильным кровотечениям. У человека авитаминоз K встречается реже, чем другие авитаминозы. Это объясняется тем, что смешанная пища содержит довольно много витамина K; кроме того, витамин K синтезируется клеточной микрофлорой кишечника в количестве, достаточном для предотвращения К-авитаминоза. Несколько по-иному обстоит дело у грудного ребенка. В первые дни жизни у него еще нет бактерий в кишечнике, поэтому витамин K должен поступать к нему с материнским молоком.

Биологическая роль

Витамин K принимает участие в механизме свертывания крови. Он необходим для нормального образования в плазме крови белка протромбина, являющегося неактивным предшественником тромбина – фермента, превращающего белок плазмы крови фибриноген в фибрин – нерастворимый волокнистый белок, способствующий формированию сгустка крови. Чтобы протромбин мог активироваться и превратиться в тромбин, он должен связывать ионы Са2+. При недостатке витамина K в организме животных синтезируются дефектные молекулы протромбина, которые не могут связывать ионы Са2+.

Источник

Наиболее богаты витамином K зеленые листья каштана, крапивы, люцерны, овощи – капуста, шпинат, тыква, зеленые томаты, растительное масло, ягоды рябины.

Из животных продуктов он содержится только в печени свиньи. Суточная потребность в витамине K для человека не установлена, так как он синтезируется микрофлорой кишечника.

Водорастворимые витамины