Лекции 17-18. Линейные дифференциальные уравнения с постоянными коэффициентами

Начнем изучение линейных дифференциальных уравнений с постоянными коэффициентами с однородных уравнений второго порядка. Дело в том, что в приближенных инженерных расчетах, в инженерной практике, в исследовании процессов и систем все часто строится на анализе систем, моделями которых служат линейные дифференциальные уравнения с постоянными коэффициентами первого и второго порядка. Вспомним, например, что вся механика строится на втором законе Ньютона, который можно записать в виде дифференциального уравнения второго порядка. Основные элементарные функции являются решениями уравнений первого и второго порядков. Экспонента является решением уравнения , - решения уравнения .

Рассмотрим линейное однородное дифференциальное уравнение с постоянными коэффициентами второго порядка

.

Будем искать его решение в виде . Подставляя в дифференциальное уравнение, получим

Так как то имеем

- характеристическое уравнение. Решая его, получим корни

.

Возможно три случая:

1) действительны и различны,

2) - комплексно сопряженные корни,

3) - действительный кратный корень.

 

В случае действительных, различных корней получаем решения

.

Для того, чтобы доказать, что решения составляют фундаментальную систему решений и общее решение записывается в виде

,

надо проверить линейную независимость . Составим определитель Вронского

, так как

.

Заметим, что для уравнения второго порядка проверять линейную независимость можно проще. Надо показать, что . Тогда столбцы определителя Вронского линейно независимы и . В нашем случае при .

 

В случае комплексно сопряженных корней , применяя формулу Эйлера получим комплексно сопряженные решения . Так как линейная комбинация решений линейного однородного уравнения тоже является решением, то являются решениями. Они линейно независимы, так как .

Следовательно, общее решение линейного дифференциального уравнения с постоянными коэффициентами в случае комплексных корней можно записать по формуле

.

 

В случае кратного действительного корня одно из решений можно выбрать в форме .

Второе решение будем выбирать в виде . Подставим в дифференциальное уравнение, чтобы определить .

,

Так как - корень характеристического уравнения, то . Так как еще и кратный корень, то по теореме Виета . Поэтому . Для определения имеем уравнение , отсюда . Выберем , получим .

Следовательно, . Решения линейно независимы, так как .

Поэтому общее решение линейного дифференциального уравнения с постоянными коэффициентами в случае кратного корня можно записать по формуле

.

Примеры. 1)

2)

3)

4)

.

5)

.

 

Рассмотрим теперь линейное однородное дифференциальное уравнение - го порядка с постоянными коэффициентами.

.

Будем искать его решение в виде . Дифференцируя и подставляя в дифференциальное уравнение, получим характеристическое уравнение

.

Каждому корню характеристического уравнения будет соответствовать определенное слагаемое в общем решении однородного уравнения. Если корень кратный кратности r, то такому корню будет соответствовать группа из r слагаемых в общем решении.

Если среди корней характеристического уравнения есть простой действительный корень , то ему соответствует частное решение в фундаментальной системе решений и слагаемое в .

Если все корни характеристического уравнения действительны и различны, то соответствующие им частные решения будут равны . Покажем, что эти решения линейно независимы. Составим определитель Вронского

 

Полученный определитель известен в алгебре как определитель Вандермонда, он равен нулю только, когда какие-либо из корней совпадают.

Так как корни различны, то определитель Вронского не равен нулю, следовательно, решения линейно независимы и составляют фундаментальную систему решений. Поэтому

.

Если среди корней имеется действительный корень кратности r, то ему соответствуют частные решения

, , , ... и группа слагаемых в общем решении

Если среди корней имеется простая пара комплексно сопряженных корней , то им соответствуют частные решения в фундаментальной системе решений и группа слагаемых в общем решении

Если среди корней имеется пара комплексно сопряженных корней , кратности r, то им соответствуют частные решения в фундаментальной системе решений ... и группа слагаемых в общем решении

Примеры.

 

,