Выбор типа кабеля для вертикальных подсистем

Кабель вертикальной (или магистральной) подсистемы, которая соединяет этажи здания, должен передавать данные на большие расстояния и с большей скоростью по сравнению с кабелем горизонтальной подсистемы. В прошлом основным видом кабеля для вертикальных подсистем был коаксиал. Теперь для этой цели все чаще используется оптоволоконный кабель.

Для вертикальной подсистемы выбор кабеля в настоящее время ограничивается тремя вариантами.

· Оптоволокно - отличные характеристики пропускной способности, расстояния и защиты данных; устойчивость к электромагнитным помехам; может передавать голос, видеоизображение и данные. Но сравнительно дорого, сложно выполнять ответвления.

· Толстый коаксиал - хорошие характеристики пропускной способности, расстояния и защиты данных; может передавать данные. Но с ним сложно работать, хотя специалистов, имеющих подобный опыт работы, достаточно много.

· Широкополосный кабель, используемый в кабельном телевидении, - хорошие показатели пропускной способности и расстояния; может передавать голос, видео и данные. Но очень сложно работать и требуются большие затраты во время эксплуатации.

Применение волоконно-оптического кабеля в вертикальной подсистеме имеет рад преимуществ. Он передает данные на значительно большие расстояния без необходимости регенерации сигнала. Он имеет сердечник меньшего диаметра, поэтому может быть проложен в более узких местах. Так как передаваемые по нему сигналы являются световыми, а не электрическими, оптоволоконный кабель не чувствителен к электромагнитным и радиочастотным помехам, в отличие от медного коаксиального кабеля. Это делает оптоволоконный кабель идеальной средой передачи данных для промышленных сетей. Оптоволоконному кабелю не страшна молния, поэтому он хорош для внешней прокладки. Он обеспечивает более высокую степень защиты от несанкционированного доступа, так как ответвление гораздо легче обнаружить, чем в случае медного кабеля (при ответвлении резко уменьшается интенсивность света).

Оптоволоконный кабель имеет и недостатки. Он дороже чем медный кабель, дороже обходится и его прокладка. Оптоволоконный кабель менее прочный, чем коаксиальный. Инструменты, применяемые при прокладке и тестировании оптоволоконного кабеля, имеют высокую стоимость и сложны в работе. Присоединение коннекторов к оптоволоконному кабелю требует большого искусства и времени, а следовательно, и денег.

Для уменьшения стоимости построения межэтажной магистрали на оптоволокне некоторые компании, например АМР, предлагают кабельную систему с одним коммутационным центром. Обычно, коммутационный центр есть на каждом этаже, а в здании имеется общий коммутационный центр (см. рис. 3.3.), соединяющий между собой коммутационные центры этажей. При такой традиционной схеме и использовании волоконно-оптического кабеля между этажами требуется выполнять достаточное большое число оптоволоконных соединений в коммутационных центрах этажей. Если же коммутационный центр в здании один, то все оптические кабели расходятся из единого кроссового шкафа прямо к разъемам конечного оборудования - коммутаторов, концентраторов или сетевых адаптеров с оптоволоконными трансиверами.

Толстый коаксиальный кабель также допустим в качестве магистрали сети, однако для новых кабельных систем более рационально использовать оптоволоконный кабель, так как он имеет больший срок службы и сможет в будущем поддерживать высокоскоростные и мультимедийные приложения. Но для уже существующих систем толстый коаксиальный кабель служил магистралью системы многие годы, и с этим нужно считаться. Причинами его повсеместного применения были широкая полоса пропускания, хорошая защищенность от электромагнитных помех и низкое радиоизлучение.

Хотя толстый коаксиальный кабель и дешевле, чем оптоволокно, но с ним гораздо сложнее работать. Он особенно чувствителен к различным уровням напряжения заземления, что часто бывает при переходе от одного этажа к другому. Эту проблему сложно разрешить. Поэтому кабелем номер 1 для горизонтальной подсистемы сегодня является волоконно-оптический кабель.

14. Критерии выбора кабеля для подсистем кампуса.

Как и для вертикальных подсистем, оптоволоконный кабель является наилучшим выбором для подсистем нескольких зданий, расположенных в радиусе нескольких километров. Для этих подсистем также подходит толстый коаксиальный кабель. При выборе кабеля для кампуса нужно учитывать воздействие среды на кабель вне помещения. Для предотвращения поражения молнией лучше выбрать для внешней проводки неметаллический оптоволоконный кабель. По многим причинам внешний кабель производится в полиэтиленовой защитной оболочке высокой плотности. При подземной прокладке кабель должен иметь специальную влагозащитную оболочку (от дождя и подземной влаги), а также металлический защитный слой от грызунов и вандалов. Влагозащитный кабель имеет прослойку из инертного газа между диэлектриком, экраном и внешней оболочкой.

Кабель для внешней прокладки не подходит для прокладки внутри зданий, так как он выделяет при сгорании большое количество дыма.

 

15. Классификация сетевых адаптеров. I, II и III поколения сетевых адаптеров.

В качестве примера классификации адаптеров используем подход фирмы 3Com, имеющей репутацию лидера в области адаптеров Ethernet. Фирма 3Com считает, что сетевые адаптеры Ethernet прошли в своем развитии три поколения.

Адаптеры первого поколения были выполнены на дискретных логических микросхемах, в результате чего обладали низкой надежностью. Они имели буферную память только на один кадр, что приводило к низкой производительности адаптера, так как все кадры передавались из компьютера в сеть или из сети в компьютер последовательно. Кроме этого, задание конфигурации адаптера первого поколения происходило вручную, с помощью перемычек. Для каждого типа адаптеров использовался свой драйвер, причем интерфейс между драйвером и сетевой операционной системой не был стандартизирован.

В сетевых адаптерах второго поколения для повышения производительности стали применять метод многокадровой буферизации. При этом следующий кадр загружается из памяти компьютера в буфер адаптера одновременно с передачей предыдущего кадра в сеть. В режиме приема, после того как адаптер полностью принял один кадр, он может начать передавать этот кадр из буфера в память компьютера одновременно с приемом другого кадра из сети.

В сетевых адаптерах второго поколения широко используются микросхемы с высокой степенью интеграции, что повышает надежность адаптеров. Кроме того, драйверы этих адаптеров основаны на стандартных спецификациях. Адаптеры второго поколения обычно поставляются с драйверами, работающими как в стандарте NDIS (спецификация интерфейса сетевого драйвера), разработанном фирмами 3Com и Microsoft и одобренном IBM, так и в стандарте ODI (интерфейс открытого драйвера), разработанном фирмой Novell.

В сетевых адаптерах третьего поколения (к ним фирма 3Com относит свои адаптеры семейства EtherLink III) осуществляется конвейерная схема обработки кадров. Она заключается в том, что процессы приема кадра из оперативной памяти компьютера и передачи его в сеть совмещаются во времени. Таким образом, после приема нескольких первых байт кадра начинается их передача. Это существенно (на 25-55 %) повышает производительность цепочки оперативная память -адаптер - физический канал - адаптер - оперативная память. Такая схема очень чувствительна к порогу начала передачи, то есть к количеству байт кадра, которое загружается в буфер адаптера перед началом передачи в сеть. Сетевой адаптер третьего поколения осуществляет самонастройку этого параметра путем анализа рабочей среды, а также методом расчета, без участия администратора сети. Самонастройка обеспечивает максимально возможную производительность для конкретного сочетания производительности внутренней шины компьютера, его системы прерываний и системы прямого доступа к памяти.

Адаптеры третьего поколения базируются на специализированных интегральных схемах (ASIC), что повышает производительность и надежность адаптера при одновременном снижении его стоимости. Компания 3Com назвала свою технологию конвейерной обработки кадров Parallel Tasking, другие компании также реализовали похожие схемы в своих адаптерах. Повышение производительности канала «адаптер-память» очень важно для повышения производительности сети в целом, так как производительность сложного маршрута обработки кадров, включающего, например, концентраторы, коммутаторы, маршрутизаторы, глобальные каналы связи и т. п., всегда определяется производительностью самого медленного элемента этого маршрута. Следовательно, если сетевой адаптер сервера или клиентского компьютера работает медленно, никакие быстрые коммутаторы не смогут повысить скорость работы сети.

Выпускаемые сегодня сетевые адаптеры можно отнести к четвертому поколению. В эти адаптеры обязательно входит ASIC, выполняющая функции МАС - уровня, а также большое количество высокоуровневых функций. В набор таких функций может входить поддержка агента удаленного мониторинга RMON, схема приоритезации кадров, функции дистанционного управления компьютером и т. п. В серверных вариантах адаптеров почти обязательно наличие мощного процессора, разгружающего центральный процессор. Примером сетевого адаптера четвертого поколения может служить адаптер компании 3Com Fast EtherLink XL 10/100.

16. Логическая структуризация локальных сетей. Ограничения сети, построенной на общей разделяемой среде. Под логической структуризацией сети понимается разбиение общей разделяемой среды на логические сегменты, которые представляют самостоятельные разделяемые среды с меньшим количеством узлов. Сеть, разделенная на логические сегменты, обладает более высокой производительностью и надежностью. Взаимодействие между логическими сегментами организуется с помощью мостов и коммутаторов.