Методи дослідження технічного стану свердловин

Вивчення технічного стану свердловин необхідне для оптимізації процесів буріння, вип­робувань і експлуатації свердловин, а також для інтерпретації результатів окремих ге­офізичних методів. З цею метою використовується комплекс різних геофізичних методів дослідження.

За допомогою інклінометричного методу визначають кут і магнітний азимут викрив­лення ствола незакріплених і закріплених свердловин для забезпечення заданого положен­ня вибою, його глибини, істинних глибин залягання і нормальної потужності пластів, вияв­лення ділянок різких викривлень.

Кавернометричний і профілеметричний методи дають змогу визначити усереднений діаметр і форму перерізу незакріплених і закріплених свердловин. За результатами досліджень проводиться розрахунок об'єму затрубного простору при визначенні кількості цементу, необхідного для цементування обсадних колон, контроль за станом ствола сверд­ловини в процесі буріння, уточнення свердловинних умов при інтерпретації матеріалів ок­ремих геофізичних методів, виявлення колекторів за наявністю глинистої кірки, контроль діаметра закріплених свердловин.

Термометричний метод визначення цементного кільця базується на вивченні природ­них і штучних теплових полів у незакріплених свердловинах. За допомогою методу вста­новлюються верхня межа цементного кільца і наявність цементу в затрубному просторі, розв'язуються літологотектонічні задачі, прогнозуються гідрогеологічна та мерзлотна харак­теристики досліджуваних районів шляхом визначення основних геометрічних параметрів, визначаються термо- і газогідродинамічні характеристики об'єктів, що експлуатуються.

Метод радіоактивних ізотопів базується на реєстрації інтенсивності гама-вип­ромінювання радіоактивних ізотопів, які додаються до цементного розчину при його приго­туванні.

Цей метод дає змогу виявити наявність цементу в затрубному просторі, висоту його підйому і характер розподілу в затрубному просторі.

За допомогою гама-гама-методу реєструється інтенсивність розсіяного гама-вип­ромінювання при проходженні гама-квантів через середовища різної щільності. Він дає змо­гу знайти висоту підйому цементу, наявність і характер його розподілу в інтервалі цементу­вання, фіксувати перехідну зону від цементного каменю до розчину, виявити у цементному камені раковини і канали, визначити ексцентриситет колони.

Акустичний метод контролю цементування колон базується на вимірюванні амплітуди заломленої поздовжньої хвилі та часу пробігу пружних коливань. За допомогою цього мето­ду знаходять висоту підйому цементу, його наявність за колоною, виявляють канали, тріщини, каверни у цементному камені, визначають ступінь зчеплення цементу з колоною і породами, досліджують процес формування цементного каменю в часі.

Припливометричним методом визначають в незакріплених і закріплених свердловинах місця припливів, поглинань і затрубної циркуляції рідини з допомогою дебітомірів, термо­метрів, резистивіметрів, радіоактивних ізотопів.

Дефектометричний метод. Контроль якості обсадних труб полягає у виявленні спрацю­вання, вмятин, тріщин, місць порушення герметичності, обривів по тілу труби, роз'єднань по муфтах, зон корозії.

Ці задачі розв'язують за допомогою трубної профілеметрії, електромагнітної профілеметрії, індукційної дефектоскопії, локаторів муфт, свердловинного акустичного те­лебачення, фотографування стінок свердловини, вимірювання товщини стінки труб.

Коли не вдається виявити інтервал перфорації за даними локатора муфт, використо­вується апаратура контролю перфорації намагнічування колон.

Акустичний метод

Акустичні методи геофізичних досліджень у свердловинах основані на вивченні пруж­них властивостей гірських порід, спостерігаючи за процесами послідовного поширення у них деформацій, викликаних пружною хвилею.

У породі виникають різні типи пружних хвиль залежно від виду деформації. Інформативними є такі хвилі: повздожні (Р-хвилі), поперечні (5-хвилі), хвилі Лемба (L-хвилі) і хвилі вторинного походження.

Найважливішими характеристиками пружних хвиль є швидкість їх поширення, амплітуда і коефіцієнт згасання, а також звукові образи. Величина, обернена швидкості по­ширення пружної хвилі в породі, називається інтервальним часом.

При акустичному каротажі (АК) реєструється повне відображення сигналу, тобто його звукові образи: хвильові картини (ХК)- графічний фотозапис на кіноплівку або на фото­папір повного сигналу спільно з почасовими марками і фазокореляційні діаграми (ФКД) -запис повного сигналу у вигляді фазових ліній. ХК і ФКД використовуються для визначен­ня петрофізичних характеристик порід: щільності, пористості та ін.

Швидкість поширення і згасання пружних хвиль у гірських породах залежить від літолого-мінералогічного стану порід, об'єму і структури перового простору, типу цементу і ступеня цементації, характеру розподілу глинистого матеріалу в породі, типу насичуючої фази і ступеня насиченості пор рідиною або газом, термобаричних умов вимірювання (ефективного тиску, температури та ін.). Переважаючими факторами є пористість породи, структура перового простору і мінеральний склад породи при однаковому заповнювачі.

При АК застосовується триелементний зонд, який складається із випромінювача і двох розташованих на деякій відстані від нього приймачів. Замість приймачів можуть бути вста­новлені два випромінювачі, а випромінювач замінений приймачем (принцип взаємності). Відстань між приймачами (випромінювачами) називається базою зонда. Довжина зонда дорівнює відстані від випромінювача до приймача.

Випромінювач посилає імпульси коливань, які складаються із трьох-чотирьох періодів. Через деякий час частинка породи починає коливатись. Перше відхилення її від рівноваги називається вступом хвилі, максимальне відхилення амплітудою, а проміжок часу між дво­ма сусідніми максимумами або мінімумами - видимим періодом Т. Частота хвилі - 1/Т. АК розрізняють за швидкістю і за згасанням. АК за швидкістю оснований на вивченні швид­кості поширення пружних хвиль в гірських породах шляхом вимірювання інтервального ча­су , який визначається як різниця часів вступу на другому і першому ^ приймачах: Така різниця часу запобігає впливу свердловини на поширення хвилі і п реєстрацію з допомогою триелементного зонда. Швидкість поширення пружної хвилі у пласті нази­вається пластовою або інтервальною.

АК за згасанням передбачає вивчення характеристик згасання пружних хвиль у поро­дах. При поширенні хвиль кількість енергії, яка припадає на одиницю об'єму, зменшується пропорційно квадрату відстані від точки спостереження до випромі-нювача; амплітуда коли­вань зменшується обернено пропорційно до цієї відстані.

На згасання пружних коливань сильний вплив має неоднорідність середовища, яка веде до послаблення коливань і пониження амплітуди хвилі. Поглинаються пружні коливання породою внаслідок процесів перетворення їх енергії в теплову енергію, що приводить до зменшення амплітуди сигналів. Здатність гірських порід поглинати пружні коливання виз­начається інтенсивністю згасання амплітуди хвилі А. Коефіцієнт поглинання породою пружних хвиль є показником втрати їх енергії внаслідок поширення. Вираз для ко­ефіцієнта має вигляд

(3.5)

де А1 і А2амплітуди хвиль, що реєструються приймачами, розташованими на відстані один від одного (ця відстань називається базою зонда).

Згасання коливань зумовлено в основному неідеальністю пружного середовища, роз­повсюдженням енергії в щораз більшому об'ємі внаслідок розширення фронту хвилі, розсіюванням і дифракцією хвиль на неоднорідностях порід. В результаті поглинання енергії амплітуда всіх хвиль в інтеравлі послаблюється в п раз.

Дані АК використовуються для розчленовування геологічного розрізу, виділен-ня нафто­газових і водонасичених колекторів, вивчення пористості, тріщиноватості та фізико-механічних властивостей гірських порід, а також інтерпретації результа-тів сейсморозвідки.

АК проводять у свердловинах, заповнених рідиною у комплексі з іншими видами ге­офізичних досліджень згідно з затвердженим комплексом ГДС для даного району. Для наф­тогазових свердловин масштаб запису інтервального часу беруть 10 мкс/м/см у карбо­натному розрізі і 20 мкс/м/см в піщаноглинистому.

Для побудови геоакустичної моделі розрізу використовується широкосмуговий АК (ШАК). За даними цього методу визначають час поширення пружних хвиль у товщах порід у вертикальному напрямі, а також інтервальну і середню сейсмічні швидкості, які викори­стовуються в сейсморозвідці для побудови меж за методом відбитих хвиль.

Геоакустичні моделі середовища, одержані за даними ШАК, використовуються також при вивченні структури горизонтів, що відбивають хвилі, при виборі опти-мальних параметрів для вивчення простору між свердловинами і побудови сейсмограм.

 

Термометричний метод

 

За допомогою термометричних методів вивчаються теплові поля у свердловинах з ме­тою розвідки корисних копалин, контролю за експлуатацією продуктивних пластів, визна­чення технічного стану свердловин, а також розв'язання задач регіональної геології і гео­термії.

Теплові поля поділяються на природні та штучні, а за зміною тепла - на стаціонарні й нестаціонарні. На теплове поле в гірських породах в основному діють два механізми перено­су теплоти: кондукція і вимушена конвекція, їх вплив на теплове поле залежить від термічних властивостей середовища: теплопровідності теплового опору , масової (С) і об'ємної теплоємностей, температуропровідності а.

Термічні властивості гірських порід визначаються їх мінеральним складом, структурою, а також термобаричними пластовими умовами. Термічні властивості гірських порід, пла­стових флюїдів і заповнювачів стовбура свердловини, що є характерні для нафтових і газо­вих свердловин, наведені в табл.3.1.

Таблиця 3.1

 

Гірські породи Вт/(мтК) х 103 кг/м3 с, х103Дж/(Кгс) х10-7 м2
Осадкові гірські породи
Алевроліт 0,4 — 0,6 1,8 — 2,8 0,8 — 1,7 5—15
Аргіліт 1,2 — 3,0 1,7 — 2,9 0,8—1,0 10—15
Глина 0,4—3,0 1,2 — 2,6 0,8 — 3,6 2—12
Доломіт 1,0 — 6,5 1,5 — 3,1 0,8 — 3,5 4 — 20
Вапняк 0,7 — 4,4 1,4 — 2,9 0,7 — 1,7 3 — 20
Кухонна сіль 1,7 — 7,2 2,1 —2,3 0,8 — 4,7 10 — 40
Крейда 0,8 — 2,2 1,5 — 2,8 0,8 — 3,9 2—15
Мергель 0,5 — 3,9 1,5 — 2,8 0,8 — 3,1 3 — 14
Пісковик 0,4 — 5,0 2,0 — 3,0 0,7 — 3,4 3 — ЗО
Метаморфічні гірські породи
Глинистий сланець 0,3 — 3,0 1,7 — 2,9 0,7 — 1,0 6 — 30
Гнейс 1,0 — 5,0 2,6 — 3,1 0,8— 1,2 4—16
Кварцит 2,7 ^ 7,5 2,6 — 2,7 0,7 — 1,3 12 — 30
Мармур 1,3 — 4,0 2,6 — 2,7 0,4—1,0 10 — 50
Магматичні гірські породи
Андезит 1,3 — 3,0 2,2 — 2,7 до 13
Базальт 0,5 — 4,3 1,7 — 3,0 0,6 — 2,1 3 — 22
Габро 1,7 — 2,9 2,8 — 3,1 0,7—1,2 8—13
Граніт 1,4 — 4,1 2,5 — 2,7 0,5—1,6 6—15
Діабаз 2,1 —2,9 2,6 — 3,0 0,8 — 2,1 4 — 7
Діоріт 1,4 — 2,9 2,6 — 2,9 0,6—1,2 3 — 12
Кварцевий порфір біля 1 ,0 2,5 — 2,7 до 1,2 5 — 7
Пластові флюїди і заповнювачі стовбура свердловини
Вода 0,37 — 0,56 1,04—1,18 3,9 — 4,8 0,87—1,15
Нафта 0,1 —0,14 0,85 — 0,87 1,9 — 2,4 0,56 — 0,86

 

Продовження табл. З.1.

 

Гірські породи λ, Вт/мтК) р. х103 кг/м3 с, х103 Дж/Кгс) а, х10-7 м2
Газ 0,02 — 0,05 __ 2,3 — 4,2
ПР звичайна ПР обважнена 0,6 — 0,9 10,6 — 0,9 1,1 — 1,5 1,7 — 2,2 2,8 — 3,6 1,5 — 2,0 1,5 — 2,3 1,9 — 2,6
Цементний камінь
Портландцемент з бетонітовою глиною 0,32 — 0,34 1,4—1,6 1,3 — 2,2 0,9—1,4
з кварцевим піском 0,37 — 0,50 1,0—1,3 1,8 — 2,1 1,6 — 2,3

Для вимірювання температури у свердловинах застосовують спеціальні електричні або електронні термометри, які опускаються у свердловину на каротажному кабелі. Температу­ра у свердловині вимірюється при двох режимах - невстановленому і встановленому. При невстановленому тепловому режимі температура вимірюється для розв'язання таких задач: вияснення температурного режиму роботи бурильного інструменту і геофізичних приладів; врахування температури при інтерпретації даних каротажу; виділення інтервалів затрубних перетоків, визначення місць притоку у свердловину газу і нафти, виявлення дебіту газу, виділення газоносних пластів, визначення висоти підйому цементу у затрубному просторі, поглинаючих і віддаючих пластів, знаходження інтервалів перетоку пластових флюїдів.

При встановленому режимі вимірюється температура порід. Вимірювання проводять через 10 і більше діб перебування свердловини у спокої. У свердловині не повинно бути пе­реливів, газопроявів, затрубного руху. Результати вимірювань представляють у вигляді діаграм зміни природної температури у свердловині з глибиною. Температурну криву запи­сують при спуску термометра. При підйомі термометра проводяться контрольні заміри. За цими даними підраховують геометричний ступінь і геотермічний градієнт для різних ділянок розрізу.