Поток генов во времени

Нас здесь интересует генетически эффективный поток генов, происходящий на протяжении ряда поколений, в который вовлечены три или большее число популяций или субпопуляций. Мы будем применять формулу, приведенную ранее для простого случая, к несколько более сложному случаю с участием трёх поколений и четырёх популяций.

Допустим, что существуют четыре полуизолированные популяции (А, В, С и D), распространенные по трансекте, тянущейся с востока на запад. Популяция А содержит новый аллель G2, частота которого в поколении 0 равна 1.0; остальные популяции содержат прежний аллель (G1) с исходной частотой 100%. Аллель G2 в селективном отношении не лучше, но и не хуже аллеля G1. Между соседними популяциями имеет место миграция в обоих направлениях со скоростью m=0.1. Спустя три поколения частота нового аллеля G2 в четырёх популяциях составит:

популяция A q = 0.755

популяция В q = 0.219

популяция С q = 0.025

популяция D q = 0.001

Совершенно очевидно, что частота нового аллеля на каждом этапе его миграционного пути резко уменьшается. И это несмотря на то, что в нашем примере исходное различие по частотам аллеля между популяцией А и другими популяциями очень велико, в сущности максимально, и скорость миграции относительно высока. В некотором ограниченном ряду генераций (большем, чем в этом примере) на одном из этапов миграции новый мигрирующий аллель G2 окажется таким редким, что его шансы попасть в следующую выборку эмигрантов будут очень незначительны. Процесс генетически эффективного потока генов временно прекратится.

На протяжении длинного ряда поколений при продолжающемся потоке генов частоты аллелей во всех четырёх популяциях будут приближаться к равновесным, но на это потребуется много времени.

В предыдущем разделе мы пришли к выводу, что расстояния, на которые происходит расселение, с увеличением числа поколений приобретают существенную дополнительную компоненту. По расстояниям, на которые расселяется популяция за одно поколение, можно путем экстраполяции оценить расстояние, на которое она сможет расселиться с течением времени (табл. 7.5). Теперь же мы видим, что миграция нового аллеля в пространстве и во времени происходит по-разному. В каждом поколении новым аллелем обладает обычно лишь некоторая доля эмигрантов, причём величина этой доли в каждом последующем поколении уменьшается. Генетически эффективный поток генов в той мере, в какой он определяется одной лишь скоростью миграции, ограничен в пространстве гораздо сильнее, чем поэтапная миграция. Генетически эффективный поток генов довольно значительно буксует по сравнению с процессом расселения (см, также Grant, 1980*).

Попытаемся рассмотреть эти выводы применительно к проблеме миграции генов в обширной популяционной системе. Допустим, что эта система протянулась на 1000 км и что отрезок времени составляет 1000 лет. Может ли отдельный ген, не имеющий селективного преимущества, распространиться в этой системе за указанный срок?

Если этот ген принадлежит растению, т. е. сидячему организму, или малоподвижному животному, например улитке, то ответ, очевидно, должен быть отрицательным; скорость их расселения слишком мала, как это видно из табл. 7.5. Высокоподвижное быстро размножающееся животное, подобное дрозофиле, может легко расселиться за предоставленное время на 1000-километровое расстояние путем поэтапной миграции (табл. 7.5). Её способность к расселению вполне соответствует поставленной задаче. Однако мы не вправе допустить, что генетически эффективный поток генов, составляющий всего лишь часть потенциала расселения, соответствует этой же задаче у того же самого организма.

До сих пор мы считали мигрирующий аллель G2 нейтральным в отношении отбора. Изменим это допущение и придадим ему селективное преимущество перед обычным(и) и широко распространенным(и) в популяционной системе аллелем(ями). Это создаёт комбинацию сил — поток генов и отбор, которые способствуют распространению аллелей. Однако миграция аллеля G2 всё ещё будет протекать медленно, так как отбор требует времени. Поскольку аллель G2 при проникновении в новую популяцию обладает низкой начальной частотой, понадобится отбор на протяжении многих поколений, для того чтобы его частота повысилась до уровня, обеспечивающего его передачу следующей популяции, и, однажды возникнув, этот процесс должен повторяться вновь и вновь. В случае ступенчатого потока генов под контролем объединенных сил миграции и отбора нам следует принимать во внимание отбор, происходящий на каждой ступени миграции в течение многих поколений.

Здесь эта проблема рассмотрена в качественном аспекте на предварительном уровне. Рассмотрение её в количественном аспекте очень желательно, однако сопряжено с трудностями, так как ступенчатый поток генов представляет собой стохастический процесс или же, что ещё больше осложняет дело, — ряд стохастических процессов, каждый из которых может привести к весьма разнообразным результатам (Slatkin, личное сообщение).



?>