Отклонение температуры корпуса редуктора от 20 ºС
Δt2º = 20 –20 = 0.
Гарантированный боковой зазор в передаче
jn min = 0,06 + 112·(11,5·10-6·15 - 10,5·10-6·0)·2·sin20 = 0,073 мм.
Определяем вид сопряжения по [10, с. 433-434, табл.5.17]. Для зубчатого колеса с m≥1 мм, aw = 112 мм и jn min = 0,073 мм (73 мкм) – вид сопряжения С.
Выбираем показатель, обеспечивающий гарантированный боковой зазор по [10, с. 433, табл.5.16] – far (отклонение межосевого расстояния).
По виду сопряжения определяем предельные отклонения межосевого расстояния ±fa [10, с. 434, табл.5.17]
aw = 112 ± fa = (112 ± 0,045) мм.
4. Схемы измерения всех назначенных параметров [5, с. 327-330].
4.1. Местная кинематическая погрешность зубчатого колеса может быть проконтролирована на приборах для измерения кинематической точности, в частности путем определения ее гармонической составляющей - наибольшей разности между местными соседними максимальными и минимальными значениями кинематической погрешности зубчатого колеса за один оборот. Кинематическую погрешность зубчатых колес 1 и 6 (одно из колес образцовое, а другое проверяемое) контролируют на приборах со стеклянными лимбами 2 и 5, имеющими радиальные штрихи с ценой деления 2'. Перемещение штрихов вызывает импульсы тока в фотодиодах. Сдвиг фаз импульсов, вызванный кинематической погрешностью в зубчатой паре и несогласованностью вращения зубчатых колес, определяется фазомером 3 и записывающим самописцем 4.
4.2. Накопленную погрешность шага можно проконтролировать на приборе, схема которого приведена ниже, в котором при непрерывном вращении зубчатого колеса 5 в электронный блок 2 поступают импульсы от кругового фотоэлектрического преобразователя 4, установленного на одной оси с измерительным колесом, выдающего командный импульс при заданном положении зуба. При появлении командного импульса самописец 3 фиксирует ординату погрешности шага колеса.
4.3. Измерение погрешности направления зуба прямозубых колес осуществляется на приборах, у которых существует каретка с точными продольными направляющими и измерительный наконечник перемещается вдоль оси измеряемого колеса.
1 – стол с продольным перемещением совместно с проверяемым колесом; 2 – поперечная каретка; 3 - шпиндель; 4 – проверяемое колесо; 5 – измерительный узел; 6 – микроскоп; 7 – линейка, которую можно точно устанавливать на заданный угол.
4.4. Измерение колебаний межосевого расстояния за один оборот в двухпрофильном зацеплении можно выполнить на приборе МЦ-400 для измерения межосевого расстояния. На оправки 4 и 5 насаживают контролируемое 6 и образцовое 3 зубчатые колеса. Оправка 5 расположена на неподвижной каретке 7, положение которой может изменяться лишь при настройке на требуемое межцентровое расстояние. Оправка 4 расположена на неподвижной каретке 2, которая поджимается пружиной так, что зубчатая пара 3-6 находится всегда в плотном соприкосновении по обеим сторонам профилей зубьев. При вращении зубчатой пары вследствие неточностей ее изготовления измерительное межосевое расстояние измеряется, что фиксируется отсчетным или регистрирующим прибором 1.
5. Выполняем рабочий чертеж зубчатого колеса [10, с. 451]. Правила выполнения чертежей цилиндрических зубчатых колес по ГОСТ 2.403-75 (конструкция и форма колеса должна соответствовать заданию).