ВЕРОЯТНОСТЬ ОТКАЗА СИСТЕМЫ Q(T)

 

Под вероятностью отказа системы понимают вероятность того, что за заданный интервал времени t в системе произойдет отказ, т.е. время исправной работы системы будет меньше заданного. Так как безотказная работа и отказ- события противоположные, то Q(t)=1-P(t)

Q(t)=1-{[1- [1-q2(t)]... [1-qN(t)]} при q(t)- одинаковых Q(t)=1-[1-q(1)]N. Если надежность оценивается для малых промежутков времени, когда вероятность отказа много меньше 1, тогда Q(t)=1-{1-[q1(t)+ q2(t)+... qN(t)]}=Sqi(t)(от 1 до N). Если вероятность отказов элементов равны, то Q(t)=Nq(t).


5. ЧАСТОТА ОТКАЗОВ F(T).

 

Под частотой отказов элементов понимают число отказов за единицу времени, отнесенное к первоначальному числу элементов, поставленных на испытание. Статистически определение частоты производится по выражению: f=n(Dt)/(N*Dt), где n(Dt)- число элементов, отказавших за интервал времени Dt; N- число элементов, поставленных на испытание; Dt- рассматриваемый интервал времени. При определении частоты отказов элементы не ремонтируются и новыми не заменяются. По полученным оценочным значениям строится гистограмма. Если dt мало, то вероятность отказа одновременно 2х элементов весьма мала и следовательно вероятность отказа любого элемента пропорционально длине промежутка времени и равна q*(t,t+dt)=f*(t)dt. График показывает как распределена плотность вероятности времени исправной работы в каждой точке. Вероятность отказа элемента за время t может быть найдена интегрированием функции f(t) за этот промежуток времени: q(t)=$f(t)dt(от 0 до t) или p(t)=1-q(t)=1-$f(t)dt(от 0 до t)=$f(t)dt(от t до +бесконечности). Если продеффиринцировать полученное уравнение то получим: dp(t)/dt=-f(t)=-p’(t) или f(t)=q’(t). Производная показывает скорость снижения надежности во времени. Так, частота отказов показывает скорость падения надежности невосстанавливаемых элементов.

Достоинства этого критерия в том, что он позволяет судить о числе элементов которые откажут в течении определенного интервала времени. Понятие частоты отказов используется только для невосстанавливаемых изделий. Для восстанавливаемых изделий используется критерий средняя частота отказов (параметр потока отказов)- fср(t) – это отношение числа отказавших в единицу времени элементов к общему их числу, при условии что отказавшие элементы заменяются новыми: fср(t)= n(Dt)/(N*Dt). Если сравнить fср(t) и f(t) то мы увидим что fср(t)>f(t). Эти два критерия связаны между собой интегральным уравнением Вольтера второго рода. Достоинства этого критерия в том, что он отражает реальные условия эксплуатирования.