Представление чисел в ЭВМ
В цифровых ЭВМ числовая информация представляется в двух формах:
- с фиксированной точкой (естественная форма);
- с плавающей точкой (экспоненциальная форма).
При представлении чисел с фиксированной точкой подразумевается, что положение точки, разделяющей число на целую и дробную части, неизменно для всех чисел. Эта форма наиболее проста, естественна, но имеет небольшой диапазон представления чисел и поэтому не всегда приемлема при вычислениях. В современных ЭВМ естественная форма используется, например, для представления целых чисел (дробная часть числа всегда отсутствует), денежных сумм (дробная часть всегда составляет четыре знака).
Представление с плавающей точкой любого числа N в общем виде описывается следующей формулой:
N = ± M × p±k,(3.3)
где ±M – мантисса (дробная часть) числа; p – основание системы счисления; ±k – порядок (целое число), при этом положительный знак мантиссы и порядка может опускаться, а при указании порядка в десятичной системе принято использовать символ Е. Например, десятичное число с фиксированной точкой 123,45 может быть представлено в форме с плавающей точкой как 0,12345 × 103, или, как это принято, 1,2345Е+02. Такая форма представления имеет огромный диапазон отображения чисел и является основной в современных ЭВМ.
Для представления положительных и отрицательных чисел в машинах используются специальные коды: прямой, обратный и дополнительный. Причём два последних позволяют заменить неудобную для ЭВМ операцию вычитания на операцию сложения с отрицательным числом; дополнительный код обеспечивает более быстрое выполнение операций при помощи сумматора, поэтому в ЭВМ применяется чаще именно он. Рассмотрим правила кодирования на примере целых чисел.
Для перевода числа в прямой код знак числа опускается, а в старший (знаковый) разряд ставится 0, если число положительное, и 1 – если число отрицательное. Младшие разряды кода являются двоичным представлением модуля числа. Оставшиеся разряды кода заполняются нулями. Отметим, что перевод положительных чисел в прямой, обратный и дополнительный код не изменяет изображения этих чисел (табл. 3).
Для перевода отрицательного числа в обратный код необходимо все разряды прямого кода, кроме знакового, инвертировать (заменить нули единицами, а единицы – нулями).
Для перевода отрицательного числа в дополнительный код необходимо к младшему разряду его обратного кода прибавить единицу.
Перевод отрицательного числа из дополнительного кода в прямой осуществляется в обратной последовательности: сначала вычитается единица, затем инвертируются разряды. Отметим, что положительное число (0 в старшем разряде) обратному переводу не подвергается, и имеет одинаковую запись как в прямом коде, так и в дополнительном.
Таблица 3
Примеры представления целых чисел
в шестнадцатиразрядных двоичных кодах
Число | Прямой код | Обратный код | Дополнительный код |
0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 0000 | |
0000 0000 0000 0001 | 0000 0000 0000 0001 | 0000 0000 0000 0001 | |
-1 | 1000 0000 0000 0001 | 1111 1111 1111 1110 | 1111 1111 1111 1111 |
0000 0000 0001 0100 | 0000 0000 0001 0100 | 0000 0000 0001 0100 | |
-20 | 1000 0000 0001 0100 | 1111 1111 1110 1011 | 1111 1111 1110 1100 |
При написании программ важно определить диапазоны значений и формы представления обрабатываемой информации. Например, в языках программирования семейства BASIC (Бейсик) типы переменных INTEGER и LONG используются, соответственно, для хранения целых чисел со знаком в шестнадцатиразрядном (два байта, или полуслово) и тридцатидвухразрядном (четыре байта, или машинное слово) дополнительном коде.
Знак числа фиксируется в нулевом бите первого байта (крайний левый бит). Цифровая часть числа хранится в остальных битах поля числа, причём младший двоичный разряд числа находится в последнем, правом бите последнего байта. Переменные типа SINGLE и DOUBLE используются для хранения чисел с плавающей точкой в четырёх или восьми байтах (двойное слово) соответственно.
Знак хранится в нулевом бите, биты 1–7 отводятся под порядок числа, остальные биты используются для разрядов мантиссы. Как правило, мантисса хранится в нормальном виде, т.е. первым её разрядом не является 0.
Для упрощения операций над n-разрядными порядками чисел с плавающей запятой используется смещённый код, или так называемый код с избытком 2n-1. То есть значения диапазона [-2n-1; 2n-1-1] смещаются в диапазон [0; 2n-1], что позволяет работать с порядками как с целыми без знака.
В различных преобразовательных устройствах (для кодирования положений валов, дисков и т.п.) широко используется код Грея (табл. 4). Главная особенность кода – соседние кодовые слова различаются только в одном разряде. Поэтому при последовательном переходе от числа к числу погрешность считывания не превосходит единицы младшего разряда независимо от того, в каком разряде имела место неопределённость. Для перевода числа из кода Грея в обычный двоичный код все нули и первую единицу со стороны старших разрядов оставляют без изменения. Каждый последующий разряд либо инвертируется, если число предшествующих единиц нечётно, либо остаётся без изменения.
Таблица 4
Представление десятичных чисел в четырёхразрядном коде Грея
Десятичное число | Двоичный код | Код Грея | Десятичное число | Двоичный код | Код Грея |