Нормальный закон распределения случайных величин)

Нормальный закон распределения встречается в природе весьма часто, поэтому для него разработаны отдельные эффективные методы моделирования. Формула распределения вероятности значений случайной величины x по нормальному закону имеет вид:

Как видно, нормальное распределение имеет два параметра: математическое ожидание mx и среднеквадратичное отклонение σx величины x от этого математического ожидания.

x — случайная величина; y(x) — вероятность принятия случайной величиной значения x; mx — математическое ожидание; σx — среднее квадратичное отклонение.

 

Нормализованным нормальным распределением называется такое нормальное распределение, у которого mx = 0 и σx = 1. Из нормализованного распределения можно получить любое другое нормальное распределение с заданными mx и σx по формуле: z = mx + x · σx.

Рассматривая последнюю формулу, вспомните формулы компьютерной графики: операция масштабирования выражается в математической модели через умножение (это соответствует изменению разброса величины, растягиванию геометрического образа), операция смещения выражается через сложение (это соответствует изменению значения наиболее вероятной величины, смещению геометрического образа).

Функция нормального распределения имеет вид колокола. На рис. 25.1 показано нормализованное нормальное распределение.

 

Рис. 25.1. Графический вид нормального закона распределения случайной величины х с параметрами mx = 0 и σx = 1 (распределение нормализовано)

График на рис. 25.1 показывает, что в области –σ < x < σ на графике сосредоточено 68% площади распределения, в области –2σ < x < 2σ на графике сосредоточено 95.4% площади распределения, в области –3σ < x < 3σ на графике сосредоточено 99.7% площади распределения («правило трех сигм»).



?>