Теория метода. Эффект Холла обычно наблюдают в пластине с током, которая помещена во внешнее магнитное поле перпендикулярно силовым линиям (рис
Эффект Холла обычно наблюдают в пластине с током, которая помещена во внешнее магнитное поле перпендикулярно силовым линиям (рис. 1). На каждый носитель тока, движущийся в пластине, в постоянном магнитном поле, действует сила Лоренца:
,
где q - величина заряда, - скорость носителя тока,
- вектор магнитной индукции. Поэтому в верхней части пластинки создаётся повышенная, а в нижней части - пониженная концентрация носителей заряда. Между электродами х – х устанавливается разность потенциалов, которую называют ЭДС Холла.
Количественная теория эффекта Холла дает зависимость . Коэффициент Холла R (не следует путать с сопротивлением) определяется величиной заряда q и концентрацией n0 носителей тока в материале пластинки:
. Носители тока имеют заряд
Кл. Таким образом, эксперименты по исследованию эффекта Холла позволяют определить концентрацию носителей n0. Эффект Холла ярче проявляется в полупроводниках, чем в металлах, потому что концентрация носителей заряда в полупроводниках значительно ниже. Тогда скорость
направленного движения носителей заряда под действием электрического поля находят из представлений электронной теории, используя формулу для плотности тока
(А/м2). Плотность тока вычисляют через силу тока и площадь поперечного сечения пластинки
.
Скорость носителей заряда увеличивается с ростом силы тока и не является константой, характеризующей носители конкретного проводника. Носители тока характеризуются подвижностью - отношением скорости носителя
к напряженности поля
движущегося носители:
. Подвижность выражается в (м
с-1)/(В
м-1). Напряженность поля в пластинке определяют как отношение напряжения U между концами пластинки к ее длине l: E = U/l.