Tpигонометрична форма к.ч.

 

Нехай відомі модуль і аргумент к.ч. (див рис.1.5). Зауважимо, що - полярні координати точки , яка зображає число (якщо - полярна вісь).

У випадку розміщення осей і , вказаному на рис. 1.5, відомі формули переходу від полярних до прямокутних координат точки . Додамо ці рівності, помноживши другу на :

Остання форма запису комплексного числа називається тригонометричною. Як бачимо, щоб знайти тригонометричну форму, досить обчислити модуль і аргумент к.ч.

Приклади. Записати в тригонометричній формі слідуючі числа:

1) 2) 3)

Розв’язання

1)

Відповідь:

2)

Відповідь:

3)

Відповідь: .

Розглянемо алгоритм переходу від алгебраїчної до тригонометричної форми к.ч.

Нехай дано к.ч. , на прикладі . Для переходу до тригонометричної форми необхідно:

1.Побудувати на площині ХОУ к.ч. і встановити, до якої чверті належить . На даному прикладі: ІІІ четв. Див. рис.

2.Знаходимо модуль к.ч. за формулою (1)

(1)

На прикладі маємо:

3. За допомогою таблиць або мікрокалькулятора знаходимо , ураховуючи при цьому властивість

.

На прикладі: .

4.За формулою (1.1) § 1.14знаходимо . Для даного прикладу: ІІІ чверті. Маємо:

5. Підставимо знайдені і у формулу

(2)

Для маємо:

 

Приклади для самостійного розв’язання

Представити у тригонометричній формі числа:

1. 2. 3. 4.

Відповіді. 1.

2.

3.

4.

 

4.16. Множення і ділення к.ч. в тригонометричній формі

Нехай числа записані в тригонометричній формі: .

Справедливі слідуючі формули:

Таким чином, при множенні ( діленні ) к.ч. їх модулі множаться (діляться ), а аргументи додаються (віднімаються).

З’ясуємо геометричний зміст множення. Нехай (рис 1.8). Очевидно, що одержано поворотом на кут з подальшим розтягом (стиском) в разів.

Отже, множення к.ч. зводиться до повороту і розтягу (стиску) векторів.

Подібний зміст має і ділення к.ч.


Рис.1.8

 

Приклад.Використовуючи тригонометричну форму, обчислити добуток чисел З’ясувати геометричний зміст операції множення цих чисел.

Розв’язання.

З геометричної точки зору були виконані слідуючі перетворення (рис.1.9):

1) поворот вектора на кут результат повороту;

2) стиск (без зміни напряму) вектора в 2 рази - результат множення.

Рис.1.9

За допомогою рис.1.9 в даному випадку легко перевірити, що .

Приклади для самостійного розв’язання

1.Дані числа та . Необхідно:

1) перетворити їх у тригонометричну форму;

2) знайти їх добуток ;

3) частку ;

4) зробити перевірку, виконавши ці дії над і в алгебраїчній формі.

2.Задовольнити умови прикладу 1, якщо , .

Відповіді.

1.1) , ;

2) ;

3) .

2.1) , ;

2) ;

3) .

 

 

4.17. Формула піднесення к.ч.до цілого степеня n

 

(Формула Муавра): якщо то

(1.3)

Приклад. Нехай . Обчислити .

Розв’язання.

Подамо в тригонометричній формі: застосовуємо формулу (1.3) при :

Приклади для самостійного розв’язання

Обчислити: 1. 2. 3.

Відповіді. 1. .2.–1. 3.104976.

 

4.18. Формула добування коренів

 

Формула добування коренів го степеня з числа

(1.4)

де символ означає корінь арифметичний з дійсного числа .

Таким чином, при має точно значень.

Приклад. Знайти всі значення .

Розв’язання. Запишемо число 8 в тригонометричній формі:

Застосовуємо формулу (1.4) при де

Одержуємо три значення кореня:

Відповідь:

Приклади для самостійного розв’язання

Знайти всі значення коренів: 1. 2. 3. .

Відповіді. 1. ,де k=0, 1, 2. При k=0: ;

k=1: ;

k=2: .

2.

= , де k=0, 1, 2, 3.

При k=0: ;

k=1: ;

k=2: ;

k=3: .

3. ,

де k=0, 1, 2, 3, 4, 5.

 

 

Формула Ейлера

Формула Ейлера має вигляд:

, (1.5)

де будь-яке дійсне число.

Зміст цієї рівності в тому, що вона визначає експоненту (за основою ) з чисто уявним показником, точніше, права частина в (1.5) просто позначена через , але це виправдано тим, що введений таким чином символ буде володіти властивостями експоненти в дійсній області.

За допомогою формул §§4.14,4.15,4.3 (приклад 3) безпосередньо перевіряються слідуючі властивості:

( ціле); .

Приклад. Обчислити .

Розв’язання.

 

4.20. Експонента ez

Нехай . Покладемо . Ця рівність є означенням експоненти з будь-яким показником.

Основні властивості:

( ціле);

Для доведення використовуються властивості експоненти з дійсними і чисто уявними показниками (див.§1.17).

Приклад 1. Знайти .

Розв’язання. Якщо то

Відповідь:

Приклад 2. Обчислити .

Розв’язання.

Приклад 3. Показати, що якщо комплексне число, то

Розв’язання. Нехай Очевидно, що

Залишилось зауважити, що границя змінної величини дорівнює нулю тоді і тільки тоді, коли границя її модуля дорівнює нулю.

Показникова форма к.ч.

 

Нехай Якщо число записати в тригонометричній формі а потім застосувати формулу Ейлера (1.5), одержимо так звану показникову форму к.ч.

.

Така форма запису чисел дозволяє використовувати властивості експоненти і тому зручна для різних перетворень.

Множення, ділення і піднесення до степеня к.ч.: якщо

то

;

( ціле).

Приклад 1.Записати у показниковій формі к.ч. .

Розв’язання.Користуємось алгоритмом,який вже викладений у §1.15.

1.Будуємо к.ч. на площині ХОУ і визначаємо чверть, якій воно належить.

З рис. видно, що ІІІ чв.

2.Обчислюємо модуль к.ч.

3.Знаходимо

4.Оскільки ІІІ чв., то за формулою (1.1) §1.14 маємо:

5.За формулою запишемо

.

Перевірка.

Відповідь.

Приклад 2.Використовуючи показникову форму чисел обчислити наближено (всі обчислення виконувати з чотирма знаками після коми). Для контролю знайти точне значення , виконуючи обчислення в алгебраїчній формі.

Розв’язання. Знаходимо квадрати модулів і аргументи (в градусах) даних чисел:

Виконуючи дії над числами в показниковій формі, отримаємо

До алгебраїчної форми запису числа переходимо за допомогою формули Ейлера (1.5):

Контроль. Виконаємо дії в алгебраїчній формі:

Приклади для самостійного розв’язання

Перетворити у показникову форму комплексні числа, виконати перевірку:

1. . 2. . 3. . 4. .

Відповіді.

1. . 2. .

3. . 4. .