Описание случайных погрешностей с помощью функций распределения
Рассмотрим результат наблюдений Х за постоянной физической величиной Q как случайную величину, принимающую различные значения Z, в различных наблюдениях за ней. Значения Xi будем называть результатами отдельных наблюдений.
Наиболее универсальный способ описания случайных величин заключается в отыскании их интегральных или дифференциальных функций распределения [1].
Под интегральной функцией распределения результатов наблюдений понимается зависимость вероятности того, что результат наблюдения Xi в i-м опыте окажется меньшим некоторого текущего значения х, от самой величины х:
Fx(x) = P(Xi ≤ x) (4)
Здесь и в дальнейшем большие буквы используются для обозначения случайных величин, а маленькие — значений, принимаемых случайными величинами. Поскольку функция распределения вероятности представляет собой вероятность, то она удовлетворяет следующим свойствам:
• 0 ≤ Fx(x) ≤ 1 при x ∈ (–∞, +∞),
• Fx(–∞) = 0, Fx(+∞) = 1,
• Fx(x) — неубывающая функция x,
• P(x1 < X < x2) = FX(x2) – FX(x1).
На рис.2 показаны примеры функций распределения вероятности.
Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей:
f(x) = dFX(x)/dx (5)
Физический смысл f(x) состоит в том, что произведение f(x)dx представляет вероятность попадания случайной величины Х в интервал от х до х + dx , т.е.
f(x)dx = P(x ≤ X ≤ x+dx) (6)
Свойства плотности распределения вероятности:
— вероятность достоверного события равна 1;
иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице;
— вероятность попадания случайной величины в интервал от x1 до x2.
От дифференциальной функции распределения легко перейти к интегральной путем интегрирования:
(7)
Размерность плотности распределения вероятностей, как это следует из формулы (7), обратна размерности измеряемой величины, поскольку сама вероятность — величина безразмерная.
Используя понятия функций распределения, легко получить выражения для вероятностей того, что результат наблюдений Х или случайная погрешность δ примет при проведении измерения некоторое значение в интервале [x1, x2] или [δ1, δ2].
В терминах интегральной функции распределения имеем:
P(x1 < X ≤ x2) = P{-∞ < X ≤ x2} – P{-∞ < X ≤ x1} = Fx(x2) – Fx(x1)
P(δ1 < δ ≤ δ2) = P{-∞ < δ ≤ δ2} – P{-∞ < δ ≤ δ1} = Fδ(δ2) – Fδ(δ1)
т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.
Заменяя в полученных формулах интегральные функции распределения на соответствующие плотности распределения вероятностей согласно выражению (7), получим формулы для искомой вероятности в терминах дифференциальной функции распределения:
(8)
(9)
Таким образом, вероятность попадания результата наблюдения или случайной погрешности в заданный полуоткрытый интервал равна площади, ограниченной кривой распределения, осью абсцисс и перпендикулярами к ней на границах этого интервала. Необходимо отметить, что результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины и по мере приближения к нему элементы вероятности их появления возрастают. Это дает основание принять за оценку истинного значения измеряемой величины координату центра тяжести фигуры, образованной осью абсцисс и кривой распределения, и называемую математическим ожиданием результатов наблюдений:
(10)
В заключение можно дать более строгое определение постоянной систематической и случайной погрешностей.
Систематической постоянной погрешностью называется отклонение математического ожидания результатов наблюдений от истинного значения измеряемой величины:
θ = M[X] – Q (11)
а случайной погрешностью — разность между результатом единичного наблюдения и математическим ожиданием результатов
δ = X – M[X] (12)
В этих обозначениях истинное значение измеряемой величины составляет
Q = X – θ – δ (13)