Картина мира и опытные факты на этапе становления научной дисциплины
Первая ситуация может реализовываться в двух вариантах. Во-первых, на этапе становления новой области научного знания (научной дисциплины) и, во-вторых, в теоретически развитых дисциплинах при эмпирическом обнаружении и исследовании принципиально новых явлений, которые не вписываются в уже имеющиеся теории.
Рассмотрим вначале, как взаимодействует картина мира и эмпирические факты на этапе зарождения научной дисциплины, которая вначале проходит стадию накопления эмпирического материала об исследуемых объектах. В этих условиях эмпирическое исследование целенаправлено сложившимися идеалами науки и формирующейся специальной научной картиной мира (картиной исследуемой реальности). Последняя образует тот специфический слой теоретических представлений, который обеспечивает постановку задач эмпирического исследования, видение ситуаций наблюдения и эксперимента и интерпретацию их результатов.
Специальные картины мира как особая форма теоретических знаний являются продуктом длительного исторического развития науки. Они возникли в качестве относительно самостоятельных фрагментов общенаучной картины мира на этапе формирования дисциплинарно организованной науки (конец XVIII – первая половина XIX в.). Но на ранних стадиях развития, в эпоху становления естествознания, такой организации науки ещё не было. Это обстоятельство не всегда адекватно осмысливается в методологических исследованиях. В 80-х годах, когда интенсивно обсуждался вопрос о статусе специальных картин мира, были высказаны три точки зрения: специальных картин мира вообще не существует и их не следует выделять в качестве особых форм теоретического знания; специальные картины мира являются ярко выраженными автономными образованиями; их автономия крайне относительна, поскольку они выступают фрагментами общенаучной картины мира. Однако, в истории науки могут найти подтверждения все три точки зрения, только они относятся к разным её стадиям: додисциплинарной науке XVII века, дисциплинарно организованной науке XIX – первой половины XX в., современной науке с её усиливающимися междисциплинарными связями. Эти стадии следует различать.
Первой из наук, которая сформировала целостную картину мира, опирающуюся на результаты экспериментальных исследований, была физика. В своих зародышевых формах возникающая физическая картина мира содержала (особенно в предгалилеевский период) множество натурфилософских наслоений. Но даже в этой форме она целенаправляла процесс эмпирического исследования и накопление новых фактов.
В качестве характерного примера такого взаимодействия картины мира и опыта в эпоху становления естествознания можно указать на эксперименты В. Гильберта, в которых исследовались особенности электричества и магнетизма.
В. Гильберт был одним из первых учёных, который противопоставил мировоззренческим установкам средневековой науки новый идеал – экспериментальное изучение природы. Однако картина мира, которая целенаправляла эксперименты В. Гильберта, включала ряд представлений, заимствованных из господствовавшей в средневековье аристотелевской натурфилософии. Хотя В. Гильберт и критиковал концепцию перипатетиков о четырёх элементах (земли, воды, воздуха и огня) как основе всех других тел, он использовал представления о металлах как сгущениях земли и об электризуемых телах как о сгущениях воды. На основе этих представлений Гильберт выдвинул ряд гипотез относительно электрических и магнитных явлений. Эти гипотезы не выходили за рамки натурфилософских построений, но они послужили импульсом к постановке экспериментов, обнаруживших реальные факты. Например, представления об «электрических телах» как воплощении «стихии воды» породили гипотезу о том, что все электрические явления – результат истечения «флюидов» из наэлектризованных тел. Отсюда Гильберт предположил, что электрические истечения должны задерживаться преградами из бумаги и ткани и что огонь должен уничтожать электрические действия, поскольку он испаряет истечение. Так возникла идея серии экспериментов, обнаруживших факты экранирования электрического поля некоторыми видами материальных тел и факты воздействия пламени на наэлектризованные тела (если использовать современную терминологию, то здесь было по существу обнаружено, что пламя обладает свойствами проводника).
Аналогичным образом представления о магните как о сгущении Земли генерировали знаменитые эксперименты В. Гильберта с шаровым магнитом, посредством которых было доказано, что Земля является шаровым магнитом, и выяснены свойства земного магнетизма. Эксперимент с шаровым магнитом выглядит весьма изящным даже по меркам современных физических опытов. В его основе лежала аналогия между шаровым магнитом (террелой) и Землёй. Гильберт исследовал поведение миниатюрной магнитной стрелки, помещаемой в разных точках террелы, и затем полученные данные сравнил с известными из практики мореплавания фактами ориентации магнитной стрелки относительно Земли. Из сравнения этих данных Гильберт заключил, что Земля есть шаровой магнит.
Исходная аналогия между террелой и Землёй была подсказана принятой Гильбертом картиной мира, в которой магнит как разновидность металлов рассматривался в качестве воплощения «природы земли». Гильберт даже в названии шарового магнита (террела – земля) подчёркивает общность материи земли и магнита и естественность аналогии между земным шаром и шаровым магнитом.
Целенаправляя наблюдения и эксперименты, картина мира всегда испытывает их обратное воздействие. Можно констатировать, что новые факты, полученные В. Гильбертом в процессе эмпирического исследования процессов электричества и магнетизма, генерировали ряд достаточно существенных изменений в первоначально принятой В. Гильбертом картине мира. По аналогии с представлениями о земле как «большом магните», В. Гильберт включает в картину мира представления о планетах как о магнитных телах. Он высказывает смелую гипотезу о том, что планеты удерживают на их орбитах силы магнитного притяжения. Такая трактовка, навеянная экспериментами с магнитами, радикально меняла представление о природе сил. В это время силу рассматривали как результат соприкосновения тел (сила давления одного груза на другой, сила удара). Новая трактовка силы была преддверьем будущих представлений механической картины мира, в которой передача сил на расстоянии рассматривалась как источник изменений в состоянии движения тел.
Полученные из наблюдения факты могут не только видоизменять сложившуюся картину мира, но и привести к противоречиям в ней и потребовать её перестройки. Лишь пройдя длительный этап развития, картина мира очищается от натурфилософских наслоений и превращается в специальную картину мира, конструкты которой (в отличие от натурфилософских схем) вводятся по признакам, имеющим опытное обоснование.
В истории науки первой осуществила такую эволюцию физика. В конце XVI – первой половине XVII в. она перестроила натурфилософскую схему мира, господствовавшую в физике Средневековья, и создала научную картину физической реальности – механическую картину мира. В её становлении решающую роль сыграли новые мировоззренческие идеи и новые идеалы познавательной деятельности, сложившиеся в культуре эпохи Возрождения и начала Нового времени. Осмысленные в философии, они предстали в форме принципов, которые обеспечили новое видение накопленных предшествующим познанием и практикой фактов об исследуемых в физике процессах и позволили создать новую систему представлений об этих процессах. Важнейшую роль в построении механической картины мира сыграли: принцип материального единства мира, исключающий схоластическое разделение на земной и небесный мир, принцип причинности и закономерности природных процессов, принципы экспериментального обоснования знания и установка на соединение экспериментального исследования природы с описанием её законов на языке математики.
Обеспечив построение механической картины мира, эти принципы превратились в её философское обоснование.
24) динамика научного исследования формирование теоретических моделей
В философской и методологической литературе последних десятилетий все чаще предметом исследования становятся фундаментальные идеи, понятия и представления, образующие относительно устойчивые основания, на которых развиваются конкретные эмпирические знания и объясняющие их теории.
Выявление и анализ этих оснований предполагает рассмотрение научных знаний как целостной развивающейся системы. В западной философии такое видение науки начало формироваться сравнительно недавно, в основном в постпозитивистский период ее истории. Что же касается этапа, на котором доминировали представления о на-уке, развитые в рамках позитивистской философии, то их наиболее ярким выражением была так называемая стандартная концепция структуры и роста знания1. В вей в качестве единицы анализа выступала отдельно взятая теория и ее взаимоотношение с опытом. Научное знание представало как набор теорий и эмпирических знаний, рассматриваемых в качестве базиса, на котором развиваются теории. Однако постепенно выяснялось, что эмпирический базис теории не является чистой, теоретически нейтральной эмпирией, что не данные наблюдения, а Факты представляют собой тот эмпирический базис, на который опираются теории. А факты теоретически нагружены, поскольку в их формировании принимают участие другие теории. И тогда проблема взаимодействия отдельной теории с ее эмпирическим базисом предстает и как проблема соотношения этой теории с другими, ранее сложившимися теориями, образующими состав теоретических знаний определенной научной дисциплины.
Несколько с другой стороны эта проблема взаимосвязи теорий выявилась при исследовании их динамики. Выяснилось, что рост теоретического знания осуществляется не просто как обобщение опытных фактов, но как использование в этом процессе теоретических понятий и структур, развитых в предшествующих теориях и применяемых при обобщении опыта. Тем самым теории соответствующей науки представали как некоторая динамичная сеть, целостная система, взаимодействующая с эмпирическими фактами. Системное воздействие знаний научной дисциплины ставило проблему системообразующих факторов, определяющих целостность соответствующей системы знаний. Так стала вырисовываться проблема оснований науки, благодаря которым организуются в системную целостность разнообразные знания научной дисциплины на каждом этапе ее исторического развития.
Наконец, рассмотрение роста знания в его исторической динамике обнаружило особые состояния, связанные с переломными эпохами развития науки, когда происходит радикальная трансформация наиболее фундаментальных ее понятий и представлений. Эти состояния получили название научных революций, и их можно рассматривать как перестройку оснований науки.
Таким образом, расширение поля методологической проблематики в постпозитивистской философии науки выдвинуло в качестве реальной методологической проблемы анализ оснований науки.
Эти основания и их отдельные компоненты были зафиксированы и описаны в терминах: “парадигма” (Т.Кун), “ядро исследовательской программы” (И.Лакатос), “идеалы естественного порядка” (С.Тулмин), “основные тематы науки” (Дж.Холтон), “исследовательская традиция” (Л.Лаудан).
В процессе дискуссий между сторонниками различных концепций остро встала проблема дифференцированного анализа оснований науки. Показательными в этом отношении могут служить дискуссии вокруг ключевого в концепции Куна понятия “парадигма”. Его крайнюю многозначность и расплывчатость отмечали многочисленные оппоненты Куна.
Под влиянием критики Кун попытался проанализировать структуру парадигмы. Он выделил следующие компоненты: “символические обобщения” (математические формулировки законов), образцы решения конкретных задач, “метафизические части парадигмы” и ценности (ценностные установки науки)2. Это был шаг вперед по сравнению с первым вариантом концепции, однако на этом этапе структура оснований науки осталась непроясненной. Во-первых, не показано, в каких связях находятся выделенные компоненты парадигмы, а значит, строго говоря, не выявлена ее структура. Во-вторых, в парадигму, согласно Куну, включены как компоненты, относящиеся к глубинным основаниям научного поиска, так и формы знания, которые вырастают на этих основаниях. Например, в состав “символических обобщений” входят математические формулировки частных законов науки (типа формул, выражающих закон Джоуля-Ленца, закон механического колебания и т.п.). Но тогда получается, что открытие любого нового частного закона должно означать изменение парадигмы, т.е. научную революцию. Тем самым стирается различие между “нормальной наукой” (эволюционным этапом роста знаний) и научной революцией. В-третьих, выделяя такие компоненты науки, как “метафизические части парадигмы” и ценности. Кун фиксирует их “остенсивно”, через описание соответствующих примеров. Из приведенных Куном примеров видно, что “метафизические части парадигмы” понимаются им то как философские идеи, то как принципы конкретно-научного характера (типа принципа близкодействия в физике или принципа эволюции в биологии). Что же касается ценностей, то их характеристика Куном также выглядит лишь первым и весьма приблизительным наброском. По существу, здесь имеются в виду идеалы науки, причем взятые в весьма ограниченном диапазоне - как идеалы объяснения, предсказания и применения знаний.
В принципе можно сказать, что даже в самых продвинутых исследованиях оснований науки, к каким можно отнести работы Т.Куна, западная философия науки недостаточно аналитична. Она пока не установила каковы главные компоненты оснований науки и их связи. Не прояснены в достаточной мере и связи между основаниями науки и опирающимися на них теориями и эмпирическими знаниями. А это значит, что проблема структуры оснований, их места в системе знания и их функций в его развитии требует дальнейшего, более глубокого обсуждения.
В сложившейся и развитой системе дисциплинарного научного знания основания науки обнаруживаются, во-первых, при анализе системных связей между теориями различной степени общности и их отношения к различным формам эмпирических знаний в рамках некоторой дисциплины (физики, химии, биологии и т.д.), во-вторых, при исследовании междисциплинарных отношений и взаимодействий различных наук.
В качестве важнейших компонентов, образующих основания науки, можно выделить: 1) научную картину мира; 2) идеалы и нормы научного познания; 3) философские основания науки.
Перечисленные компоненты выражают общие представления о специфике предмета научного исследования, об особенностях познавательной деятельности, осваивающей тот или иной тип объектов, и о характере связей науки с культурой соответствующей исторической эпохи.
26) динамика научного исследования проблема построения развитых теорий в классической науке
В науке классического периода развитые теории создавались путём последовательного обобщения и синтеза частных теоретических схем и законов.
Таким путём были построены фундаментальные теории классической физики – ньютоновская механика, термодинамика, электродинамика. Основные особенности этого процесса можно проследить на примере истории максвелловской электродинамики.
Создавая теорию электромагнитного поля Максвелл опирался на предшествующие знания об электричестве и магнетизме, которые были представлены теоретическими моделями и законами, выражавшими существенные характеристики отдельных аспектов электромасштабных взаимодействий (теоретические модели и законы Кулона, Ампера, Фарадея, Био и Савара и т. д.).
По отношению к основаниям будущей теории электромагнитного поля это были частные теоретические схемы и частные теоретические законы.
Исходную программу теоретического синтеза задавали принятые исследователем идеалы познания и картина мира, которая определяла постановку задач и выбор средств их решения.
В процессе создания максвелловской электродинамики творческий поиск целенаправляли, с одной стороны, сложившиеся в науке идеалы и нормы, которым должна была удовлетворять создаваемая теория (идеал объяснения различных явлений с помощью небольшого числа фундаментальных законов, идеал организации теории как дедуктивной системы, в которой законы формулируются на языке математики), а с другой стороны, принятая Максвеллом фарадеевская картина физической реальности, которая задавала единую точку зрения на весьма разнородный теоретический материал, подлежащий синтезу и обобщению. Эта картина ставила задачу – объяснить все явления электричества и магнетизма как передачу электрических и магнитных сил от точки к точке в соответствии с принципом близкодействия.
Вместе с постановкой основной задачи она очерчивала круг теоретических средств, обеспечивающих решение задачи. Такими средствами послужили аналоговые модели и математические структуры механики сплошных сред. Фарадеевская картина мира обнаруживала сходство между передачей сил в этих качественно различных типах физических процессов и тем самым создавала основу для переброски соответствующих математических структур из механики сплошных сред в электродинамику. Показательно, что альтернативное максвелловскому направление исследований, связанное с именами Ампера и Вебера, исходило из иной картины мира при поиске обобщающей теории электромагнетизма. В соответствии с этой картиной использовались иные средства построения теории (аналоговые модели и математические структуры заимствовались из ньютоновской механики материальных точек).
Синтез, предпринятый Максвеллом, был основан на использовании уже известной нам операции применения аналоговых моделей. Эти модели заимствовались из механики сплошных сред и служили средством для переноса соответствующих гидродинамических уравнений в создаваемую теорию электромагнитного поля. Применение аналогий является универсальной операцией построения новой теории как при формировании частных теоретических схем, так и при их обобщении в развитую теорию. Научные теории не являются изолированными друг от друга, они развиваются как система, где одни теории поставляют для других строительный материал.
Аналоговые модели, которые использовал Максвелл – трубки тока несжимаемой жидкости, вихри в упругой среде, – были теоретическими схемами механики сплошных сред.
Когда связанные с ними уравнения транслировались в электродинамику, механические величины замещались в уравнениях новыми величинами. Такое замещение было возможным благодаря подстановке в аналоговую модель вместо абстрактных объектов механики новых объектов – силовых линий, зарядов, дифференциально малых элементов тока и т. д. Эти объекты Максвелл заимствовал из теоретических схем Кулона, Фарадея, Ампера, схем, которые он обобщал в создаваемой им новой теории. Подстановка в аналоговую модель новых объектов не всегда осознаётся исследователем, но она осуществляется обязательно. Без этого уравнения не будут иметь нового физического смысла и их нельзя применять в новой области.
Ещё раз подчеркнём, что эта подстановка означает, что абстрактные объекты, транслированные из одной системы знаний (в нашем примере из системы знаний об электричестве и магнетизме) соединяются с новой структурой («сеткой отношений»), заимствованной из другой системы знаний (в данном случае из механики сплошных сред). В результате такого соединения происходит трансформация аналоговой модели. Она превращается в теоретическую схему новой области явлений, схему на первых порах гипотетическую, требующую своего конструктивного обоснования.
27) динамика научного исследования проблема построения развитых теорий в неклассической науке
С развитием науки меняется стратегия теоретического поиска. В частности, в современной физике теория создаётся иными путями, чем в классической. Построение современных физических теорий осуществляется методом математической гипотезы. Этот путь построения теории может быть охарактеризован как четвёртая ситуация развития теоретического знания. В отличие от классических образцов, в современной физике построение теории начинается с формирования её математического аппарата, а адекватная теоретическая схема, обеспечивающая его интерпретацию, создаётся уже после построения этого аппарата. Новый метод выдвигает ряд специфических проблем, связанных с процессом формирования математических гипотез и процедурами их обоснования.