Проверка статистических гипотез. Ошибки 1-го и 2-го рода. Статистический критерий.
Статистические гипотезы, ошибки 1-го и 2-го рода, уровень значимости.
Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Поскольку проверку производят статистическими методами, ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т. е. могут быть допущены ошибки двух родов.
Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза.
Ошибка второго рода состоит в том, что будет принята неправильная гипотеза.
Вероятность совершить ошибку первого рода принято обозначать через ; ее называют уровнем значимости. Наиболее часто уровень значимости принимают равным 0.05 или 0.01. Если, например, принят уровень значимости, равный 0.05, то это означает, что в пяти случаях из ста мы рискуем допустить ошибку первого рода (отвергнуть правильную гипотезу).
Пусть дана выборка из неизвестного совместного распределения , и поставлена бинарная задача проверки статистических гипотез:
где — нулевая гипотеза, а — альтернативная гипотеза. Предположим, что задан статистический критерий
,
31. Статистический критерий проверки нулевой гипотезы.
Для проверки нулевой гипотезы используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Эту величину обозначают через U или Z, если она распределена нормально, F или v2 – по закону Фишера-Снедекора, T – по закону Стьюдента, c² – по закону «хи квадрат» и т. д. Все эти случайные величины обозначим через К.
Статистическим критерием (или просто критерием) называют случайную величину К, которая служит для проверки нулевой гипотезы.
Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин, и таким образом получают частное (наблюдаемое) значение критерия.
Наблюдаемым значением Кнабл назначают значение критерия, вычисленное по выборкам.
32. Критическая область. Область принятия гипотезы, критические точки.
После выбора определенного критерия множество всех его возможных значений разбивают на два непересекающихся подмножества, одно из которых содержит значения критерия, при которых нулевая гипотеза отвергается, а другое – при которых она принимается.
Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают.
Областью принятия гипотезы (областью допустимых значений) называют совокупность значений критерия, при которых гипотезу принимают.
Основной принцип проверки статистических гипотез можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области – гипотезу отвергают, если области принятия гипотезы – гипотезу принимают.
Так как критерий K – одномерная случайная величина, то все ее возможные значения принадлежат некоторому интервалу и, соответственно, должны существовать точки, разделяющие критическую область и область принятия гипотезы. Такие точки называются критическими точками.
Различают одностороннюю (правостороннюю и левостороннюю) и двустороннюю критические области.
Правосторонней называют критическую область, определяемую неравенством , где – положительное число.
Левосторонней называют критическую область, определяемую неравенством , где – отрицательное число.
Двусторонней называют критическую область, определяемую неравенствами , где . В частности, если критические точки симметричны относительно нуля, двусторонняя критическая область определяется неравенствами или равносильным неравенством . Различия между вариантами критических областей иллюстрирует следующий рисунок.
Рис. 1. Различные варианты критических областей a) правосторонняя, b) левосторонняя, с) двусторонняя
Резюмируя, сформулируем этапы проверки статистической гипотезы:
Формулируется нулевая гипотеза ; Определяется критерий K, по значениям которого можно будет принять или отвергнуть и выбирается уровень значимости ; По уровню значимости определяется критическая область; По выборке вычисляется значение критерия K, определяется, принадлежит ли оно критической области и на основании этого принимается или .
26. Критерий согласия Пирсона (критерий χ2).
Критерий согласия Пирсона (χ2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний. В этом заключается его универсальность.
Использование критерия χ2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) nj для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины.
Число интервалов зависит от объема выборки. Обычно принимают: при n = 100 e = 10 ÷ 15, при n = 200 e = 15 ÷ 20, при n = 400 e = 25 ÷ 30, при n = 1000 e = 35 ÷ 40.
Интервалы, содержащие менее пяти наблюдений, объединяют с соседними. Однако, если число таких интервалов составляет менее 20 % от их общего количества, допускаются интервалы с частотой nj ≥ 2.
Статистикой критерия Пирсона служит величина
, (3.91)
где pj - вероятность попадания изучаемой случайной величины в j-и интервал, вычисляемая в соответствии с гипотетическим законом распределением F(x). При вычислении вероятности pj нужно иметь в виду, что левая граница первого интервала и правая последнего должны совпадать с границами области возможных значений случайной величины. Например, при нормальном распределении первый интервал простирается до -∞, а последний - до +∞.
Нулевую гипотезу о соответствии выборочного распределения теоретическому закону F(x) проверяют путем сравнения вычисленной по формуле (3.91) величины с критическим значением χ2α, найденным по табл. VI приложения для уровня значимости α и числа степеней свободы k = e1 - m - 1. Здесь e1 - число интервалов после объединения; m - число параметров, оцениваемых по рассматриваемой выборке. Если выполняется неравенство
χ2 ≤ χ2α (3.92)
то нулевую гипотезу не отвергают. При несоблюдении указанного неравенства принимают альтернативную гипотезу о принадлежности выборки неизвестному распределению.
Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений. В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию χ2 другими критериями. Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).