Примеры решения задач по колебаниям и волнам
Задача 1. Материальная точка массой 10 г совершает гармоническое колебание с периодом Т=1 с. Определить амплитуду колебаний, максимальную скорость и ускорение колеблющейся точки, если полная энергия точки равна 0,02 Дж.
Дано: | ![]() |
Найти: | ![]() |
Решение: Уравнение гармонического колебания запишем в виде:
(1)
где х - смещение материальной точки от положения равновесия;
А - амплитуда;
ω - циклическая (круговая) частота;
t - время;
α - начальная фаза.
Скорость колеблющейся точки среды определяется как первая производная от смещения по времени:
Максимальное значение скорости:
Ускорение точки определяется как производная от скорости по времени:
Максимальное значение ускорения:
Полная энергия складывается из кинетической и потенциальной энергии и равна максимальной потенциальной или максимальной кинетической энергии:
Круговая частота связана с периодом: . Тогда:
Из этого выражения найдем амплитуду:
Проверим размерность:
Произведем вычисления:
Ответ: А = 0,32 м, Vmax = 2 м/с, amax = 12,6 м/с2
Задача 2. Найти амплитуду и начальную фазу гармонического колебания, полученного от сложения одинаково направленных гармонических колебаний, данных уравнениями: x1 = 0,02cos (5πt + π/2) м и x2 = 0,03cos (5πt + π/4) м. Построить векторную диаграмму сложения амплитуд.
Дано: x1 = 0,02cos (5πt + π/2)
x2 = 0,03cos (5πt + π/4)
Найти: А, α. Дать векторную диаграмму.
Решение: Построить векторную диаграмму - это значит представить колебание в виде вектора, длина которого равна амплитуде колебаний, а угол наклона к оси абсцисс равен начальной фазе колебаний. При вращении вектора с угловой скоростью ω проекция его конца на ось будет совершать гармонические колебания.
Из условия задачи А1=0,02 м = 2 см, α1= π/2,
А2=0,03 м = 3 см, α2 = π/4.
Векторная диаграмма изображена на рисунке 5.
Рис. 5
Результирующую амплитуду найдем по теореме косинусов:
Начальная фаза результирующего колебания находится из формулы:
Вычисления:
Ответ: А = 4,6 м; α=62о 46′.
Задача 3. Период затухающих колебаний Т = 4 с, логарифмический декремент затухания χ = 1,6; начальная фаза равна нулю. Смещение точки в начальный момент времени равно 4,5 см. Написать уравнение колебаний и найти смещение точки в момент времени спустя период.
Дано: | ![]() |
Найти: | ![]() |
Решение: Уравнение затухающих колебаний имеет вид:
(1)
где β - коэффициент затухания,
ω - частота затухающих колебаний.
Найдем ω:
Логарифмический декремент затухания связан с коэффициентом затухания: . Отсюда:
Подставим ω, β, α в (1) и найдем смещение:
Для начального момента времени при t = 0:
Уравнение колебаний имеет вид:
Смещение в момент :
Ответ: | ![]() |
Оптика