Степень окисления - это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

Наиболее электроотрицательные элементы в соединении имеют отрицательные степени окисления, а атомы элементов с меньшей электроотрицательностью - положительные.

Степень окисления - формальное понятие; в ряде случаев степень окисления не совпадает с валентностью.

 

Например:

N2H4 (гидразин)

 

 

степень окисления азота – -2; валентность азота – 3.

 

Расчет степени окисления

 

Для вычисления степени окисления элемента следует учитывать следующие положения:

 

1. Степени окисления атомов в простых веществах равны нулю (Na0; H20).

 

2. Алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, всегда равна нулю, а в сложном ионе эта сумма равна заряду иона.

 

3. Постоянную степень окисления в соединениях с атомами других элементов имеют атомы: щелочных металлов (+1), щелочноземельных металлов (+2), фтора

(-1), водорода (+1) (кроме гидридов металлов Na+H-, Ca2+H2- и др., где степень окисления водорода -1), кислорода (-2) (кроме F2-1O+2 и пероксидов, содержащих группу –O–O–, в которой степень окисления кислорода -1).

 

4. Для элементов положительная степень окисления не может превышать величину, равную номеру группы периодической системы.

 

Примеры:

V2+5O5-2; Na2+1B4+3O7-2; K+1Cl+7O4-2; N-3H3+1; K2+1H+1P+5O4-2; Na2+1Cr2+6O7-2

 

Окисление, восстановление

 

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:

 

H20 - 2ē = 2H+ + 1/2О2

S-2 - 2ē = S0

Al0 - 3ē = Al+3

Fe+2 - ē = Fe+3

2Br - - 2ē = Br20

 

Процесс присоединения электронов - восстановление: При восстановлении степень окисления понижается.

 

Mn+4 + 2ē = Mn+2

S0 + 2ē = S-2

Cr+6 +3ē = Cr+3

Cl20 +2ē = 2Cl-

O20 + 4ē = 2O-2

 

Атомы, молекулы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а которые отдают электроны - восстановителями.

Окислитель в процессе реакции восстанавливается, восстановитель — окисляется.

 

Окислительно-восстановительные свойства вещества и степени окисления входящих в него атомов

 

Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами. Минимальная степень окисления у атомов металлов равна 0, для неметаллов - (n–8) (где n- номер группы в периодической системе). Соединения, содержащие атомы элементов с промежуточной степенью окисления, могут быть и окислителями и восстановителями, в зависимости от партнера, с которым взаимодействуют и от условий реакции.

 

Важнейшие восстановители и окислители

 

Восстановители

Металлы,

водород,

уголь.

Окись углерода (II) (CO).

Сероводород (H2S);

оксид серы (IV) (SO2);

сернистая кислота H2SO3 и ее соли.

Галогеноводородные кислоты и их соли.

Катионы металлов в низших степенях окисления: SnCl2, FeCl2, MnSO4, Cr2(SO4)3.

Азотистая кислота HNO2;

аммиак NH3;

гидразин NH2NH2;

оксид азота(II) (NO).

Катод при электролизе.

Окислители

Галогены.

Перманганат калия(KMnO4);

манганат калия (K2MnO4);

оксид марганца (IV) (MnO2).

Дихромат калия (K2Cr2O7);

хромат калия (K2CrO4).

Азотная кислота (HNO3).

Серная кислота (H2SO4) конц.

Оксид меди(II) (CuO);

оксид свинца(IV) (PbO2);

оксид серебра (Ag2O);

пероксид водорода (H2O2).

Хлорид железа(III) (FeCl3).

Бертоллетова соль (KClO3).

Анод при электролизе.