Сурьмы и висмута на живой организм
При производстве азотной кислоты и некоторых других веществ образуются нитрозные газы, представляющие собой смесь оксидов: NО, NО2, N2О3, N2О4. При контакте этих газов с влажной поверхностью в легких образуются азотная и азотистая кислоты, поражающие легкие, что приводит к отеку и сложным расстройствам. При отравлении газами в крови образуются также нитраты и нитриты, которые очень токсичны, так как они являются дезаминирующими агентами, способствуют окислению аминогрупп нуклеиновых кислот и повреждают ДНК. Для человека предельно допустимое содержание NO2 в воздухе составляет 10-4%. Неуправляемые переносы оксидов азота ветрами заканчиваются выпадением кислотных дождей, содержащих азотную кислоту. Непосредственное попадание нитратов и нитритов в пищевые продукты происходит из-за завышенного внесения азотных удобрений в почву.
Нитрат-ионы восстанавливаются в организме человека до нитрит-ионов, которые вызывают метгемоглобиновую гипоксию. Под действием нитритов гемоглобин превращается в метгемоглобин, который не способен связывать и переносить кислород:
HbFe2+ + NO2- ® HbFe3+ + NO
связывает не связывает
кислород кислород
Попадая в кровь, нитриты вызывают кислородную недостаточность. В связи с этим в настоящее время NаNО2 почти не используют в медицинской практике.
В кишечном тракте нитриты превращаются в нитрозамины R2N-N=О - сильные канцерогены.
Фосфаты для организма не токсичны, более токсичны фосфиты и особенно фосфорорганические соединения (ФОС), являющиеся сильными нервно-паралитическими ядами и входящие в состав боевых отравляющих веществ.
Для всех ФОС характерно угнетение холинэстеразы, что используется при диагностике отравления ими. Схема взаимодействия холинэстеразы с ФОС:
Для хронических форм отравлений ФОС характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем. Выводятся ФОС из организма, главным образом, почками.
Соединения мышьяка(V) и в особенности мышьяка(III) очень токсичны. Механизм токсического действия объясняется способностью мышьяка блокировать сульфгидрильные группы –SН ферментов и других биологически активных соединений. Например, в организме человека мышьяк взаимодействует с глутатионом. При этом блокируется сульфгидрильная группа, и глутатион теряет одну из важных биологических функций – восстановление токсичных пероксидов:
R–S–H + As(OH)3 ® R–S–As(OH)2 + H2O,
где R – радикал глутамат-иона.
Кроме того, мышьяк может замещать йод, селен и фосфор. Нарушая биохимические процессы метаболизма в организме, As является антиметаболитом этих элементов.
Смертельная доза для человека составляет приблизительно 0,05-0,1 мг мышьяка. Вредное действие мышьяка на организм связано не только с его токсичностью, но и канцерогенным действием.
Европейские нормы качества питьевой воды устанавливают предельно допустимую концентрацию мышьяка 0,2 мг/л. Эта же норма в питьевой воде принята в Англии. В нашей стране принята норма мышьяка в питьевой воде 0,05 мг/л (ГОСТ 2874-54).
Сурьма раздражает слизистую оболочку желудочно-кишечного тракта и кожу, вредно влияет на нервную систему и мышцу сердца. Соединения трехвалентной сурьмы токсичнее соединений пятивалентной сурьмы. Летальная доза сурьмы для взрослого 97,2 мг и для детей 48,6 мг. Предельно допустимые концентрации сурьмы в питьевой воде не нормируются ни в нашей стране, ни за рубежом.
Ядовитыми свойствами обладают легко растворимые соединения висмута, применяемые в терапевтической практике в качестве противосифилитических или рвотных средств. Однако и труднорастворимые соли висмута под влиянием соляной, молочной и других органических кислот образуют легко растворимые комплексные соединения висмута, всасывающиеся в кишечнике и угнетающие ферменты амино- и карбоксиполипептидазы. При введении в кровь комплексных солей висмута наблюдались отравления.
Для качественного обнаружения соединений мышьяка, сурьмы и висмута используются различные химические реакции.