Пример решения задачи Д 4

Вертикальный вал длиной ( АВ=ВD =DЕ=ЕК=а), закрепленный подпятником А и подшипником D ( Рис. Д 4,а), вращается с постоянной угловой скоростью ω. К валу жестко прикреплен в точке Е ломаный однородный стержень массой m и длиной , состоящий из двух частей 1 и 2 , а в точке В прикреплен невесомый стержень длиной с точечной массой m3 на конце; оба стержня лежат в одной плоскости.

Д а н о :

О п р е д е л и т ь: реакции подпятника А и подшипника D, пренебрегая весом вала.

Решение:1. Изображаем (с учетом заданных углов) и прикрепленные к нему в точках В и Е стержни ( рис. Д4, б). Массы и веса частей 1 и 2 ломаного стержня пропорциональны длинам этих частей и соответственно равны

. (1)

2. Для определения исходных реакций рассмотрим движение заданной механической системы и применим принцип Даламбера. Проведем вращающиеся вместе с валом координатные оси Аху так, чтобы стержни лежали в плоскости ху , и изобразим действующие на систему силы: активные силы – силы тяжести P1, P2 , P3 и реакции связей – составляющие реакции подпятника ХА, УА и реакцию цилиндрического подшипника RD.

Согласно принципу Даламбера, присоединим к этим силам силы инерции элементов однородного ломаного стержня и груза, считая его материальной точкой.

Так как вал вращается равномерно, то элементы стержня имеют только нормальные ускорения , направленные к оси вращения, а численно расстояния элементов от оси вращения. Тогда силы инерции - будут направлены от оси вращения, а численно

масса элемента. Так как все пропорциональны , то эпюры этих параллельных сил инерции стержня образуют для части 1 треугольник, а для части 2 –прямоугольник (рис. Д4,б).

Каждую из полученных систем параллельных сил инерции заменим ее равнодействующей , равной главному вектору этих сил. Так как модуль главного вектора сил инерции любого тела имеет значение , где m- масса тела, - ускорение его центра масс, то для частей стержня соответственно получим

(2)

Сила инерции точечной массы 3 должна быть направлена в сторону, противоположную ее ускорению и численно будет равна

(3)

Ускорения центров масс частей 1 и 2 стержня и груза 3 равны:

 

, , , (4)

где расстояния центров масс частей стержня от оси вращения, а соответствующее расстояние груза:

,

, (5)

.

 

 

Рис. Д 4.а

Рис. Д 4. б

 

Подставив в (2) и (3) значения (4) и учтя (5), получим числовые значения :

,

, (6)

.

При этом линии действия равнодействующих пройдут через центры тяжестей соответствующих эпюр сил инерции. Так, линия действия проходит на расстоянии от вершины треугольника Е, где .

3. Согласно принципу Даламбера, приложенные внешние силы (активные и реакции связей) и силы инерции образуют уравновешенную систему сил. Составим для этой плоской системы сил три уравнения равновесия. Получим

;

(7)

Где плечи сил относительно точки А, равные (при подсчетах учтено, что м)/

м,

м. (8)

Подставив в уравнение (7) соответствующие величины из равенств (1), (5), (6), (8) и решив эту систему уравнений (7), найдем искомые реакции.

О т в е т : ХА=-33,7 Н, УА= 117,7 Н, RD=-45,7 Н.

Рис.Д 4.0 Рис. Д4.1

 

 

Таблица Д 4.

Номер условия Подшипник в точке Крепление в точке α, град. β, град. γ,град. φ,град.
ломаного стержня невесомого стержня рис.0-4 рис.5-9
В D К
К В D
К Е В
D К В
К D Е
Е В К
Е D К
К В Е
D Е К
Е К D

 

Рис. Д4.2 Рис.Д4.3

 

Рис. Д4.4 Рис. Д4.5

 

 

Рис. Д4.6 Рис. Д4.7

 

 

 

Рис. Д4.8 Рис. Д4.9

 

СПИСОК ЛИТЕРАТУРЫ

Основной

 

1. Яблонский А.А., В.М.Никифорова Курс теоретической механики. Учеб.пособие для вузов: 15-е изд., стер.-М.;КНОРУС,2010.-608с.

2. Тарг С.М. Краткий курс теоретической механики: Учеб. для втузов/С.М.Тарг.-15-е изд.,стер.-М.:Высш.шк.,2005.-415 с.

3. Мещерский И.В. Задачи по теоретической механике: Учеб. пособие для студ.вузов,обуч.по техн.спец./И.В.Мещерский; Под ред. В.А.Пальмова, Д.Д.Меркина.-45-е изд.,стер.-СПб.и др.: Лань,2006.-447 с. 2. Тарг С.М.

Дополнительный

1. Сборник заданий для курсовых работ по теоретической механике: Учеб. пособие для студ.втузов/[А.А. Яблонский, С. С.Норейко,С.А.Вольфсон и др.];Под общ. ред. А. А. Яблонского.- 11-е изд.,стер.-М.:Интеграл- Пресс,2004.-382 с.

2. Бать М.И и др. Теоретическая механика в примерах и задачах. Учеб.пособ. для вузов. В 2-х т./М.И.Бать, Г.Ю.Джанелидзе, А.С. Кельзон.-9-е изд., перераб.-М.:Наука,1990.-670 с.

3. Теоретическая механика. Терминология. Буквенные обозначения величин: Сборник рекомендуемых терминов. Вып. 102. М.: Наука, 1984. – 48с.

 

Приложение А

Справочное

Приложение А.1. Пример оформления титульного листа курсовой работы