Основные теоретические положения. Метод узловых напряжений заключается в определении на основании первого закона Кирхгофа потенциалов в узлах электрической цепи относительно некоторого

 

Метод узловых напряжений заключается в определении на основании первого закона Кирхгофа потенциалов в узлах электрической цепи относительно некоторого базисного узла. Базисный узел в общем случае выбирается произвольно, потенциал этого узла принимается равным нулю. Разность потенциалов рассматриваемого и базисного узлов называется узловым напряжением.

Положительное направление узловых напряжений указывается стрелкой от рассматриваемого узла к базисному.

Число уравнений, составляемое по методу узловых напряжений, равно

(4.1)

где – количество узлов цепи, – количество идеальных источников Э.Д.С.

Для произвольной схемы, содержащей узлов, система уравнений по методу узловых напряжений имеет вид:

(4.2)

где – собственная проводимость узла .

– взаимная проводимость ветви, соединяющей узлы .

Собственная проводимость узла равна сумме проводимостей ветвей, сходящихся в данном узле.

Взаимная проводимость равна сумме проводимостей ветвей, соединяющих данные узлы.

Выражение, стоящее в правой части уравнений системы, называют «узловой ток».

Узловой ток (теоретическое понятие) – это алгебраическая сумма произведений и источника тока (если они есть) всех ветвей, примыкающих к рассматриваемому узлу. Слагаемое входит в выражение со знаком «+», если Э.Д.С. и источник тока направлены к узлу. В противном случае – ставится знак «–».

Из системы (4.2) видно, что собственные проводимости входят в уравнения со знаком «+», а взаимные проводимости – со знаком «–».

Алгоритм расчета электрических цепей по методу узловых напряжений:

1) Выбираем базисный узел. Желательно нулевой потенциал присвоить тому узлу, где сходится большее количество ветвей.

Запомнить! Если в составе цепи имеется одна или несколько ветвей, содержащих идеальные Э.Д.С. (сопротивление таких ветвей равно нулю), то за базисный принимают один из узлов, между которыми находится ветвь с идеальной Э.Д.С.

2) Составляется система уравнений для неизвестных узловых напряжений в соответствии с общей структурой этих уравнений (4.2).

3) Решая данную систему, находят напряжения узлов относительно базиса.

4) Токи ветвей определяют по обобщенному закону Ома:

.

Частным случаем метода узловых напряжений является метод двух узлов. Если схема содержит только два узла, то в соответствие с методом узловых напряжений (в отсутствие идеальных Э.Д.С.) составляется только одно уравнение:

.  

 

Примеры расчета линейных электрических цепей методом узловых напряжений

 

Пример 4.1

Рис. 4.1 Дано: ; ; ; ; ; Определить все токи в схеме рис. 4.1 методом узловых напряжений.

Решение

Цепь содержит три узла, ветви с идеальными Э.Д.С. отсутствуют. Число необходимых уравнений, определяемое по формуле (4.1), равно двум. В качестве базисного выбираем третий узел.

Система уравнений имеет вид:

,

 

где

;

;

;

;

.

В результате решения определяем:

;

.

Токи ветвей определяем по обобщенному закону Ома:

;

;

;

;

.

Правильность решения задачи целесообразно проверить составлением и расчетом баланса мощностей.

Уравнение баланса мощностей:

;

;

.

Мощность приемников равна мощности потребителей, т.е. баланс мощностей выполняется.

Проверим выполнение второго закона Кирхгофа для внешнего контура.

Второй закон Кирхгофа:

;

;

.

Ответ: , , , , .

 

Пример 4.2

Дано: ; ; ; ; ; ; ; ; .  
Рис. 4.2

Определить токи в схеме рис. 4.2 методом узловых напряжений.

Решение

В схеме 4 узла. В ветвях 3 и 6 включены идеальные источники Э.Д.С., эти ветви соединяются в узле 4. По формуле (4.1) определяем число уравнений: .

Действительно, если за базисный узел принять узел 4 (но также можно принять узел 1 или 3), то сразу определяем и . Неизвестным является узловое напряжение .

Уравнение по методу узловых напряжений имеет вид:

.

где

;

;

;

;

;

.

Определяем токи , , , , по закону Ома:

; ;

; ; .

Токи и определяем по первому закону Кирхгофа:

;

.

Ответ: , , , , , .

Пример 4.3

Дано: ; ; ; ; ; .
Рис. 4.3  

Решение

Особенностью схемы является наличие двух ветвей с идеальными источниками Э.Д.С., которые расположены в ветвях, не имеющих общего узла. В этом случае цепь подвергается следующему преобразованию. В одной из ветвей, содержащих идеальный источник Э.Д.С. (например ветвь с ), включают компенсирующую Э.Д.С. , равную по величине и противоположную по направлению. Точно такая же Э.Д.С. включается во все соседние ветви, сходящиеся в одном из узлов данной ветви. Направления включаемых Э.Д.С. по отношению к этому узлу сохраняется (рис. 4.4). Токораспределение в цепи не изменяется.

Рис. 4.4

Рисунки 4.5 а, б, в – демонстрируют это преобразование.

Теперь схема (рис. 4.5 в) содержит только одну ветвь с идеальным источником Э.Д.С. . Потенциалы узлов 1 и 2 равны, т.к. их соединяет короткозамкнутый участок (рис. 4.5 а). Следовательно ветвь с можно удалить из схемы. Примем узел 4 за базисный, тогда

.

Уравнение по методу узловых напряжений имеет вид:

,

где

; ; ;

; ; .

а

б

в
Рис. 4.5

Переходим к исходной схеме (рис. 4.3). Запишем уравнение по 1–ому закону Кирхгофа для узла 3:

,

откуда

.

Запишем уравнение по 1–му закону Кирхгофа для узла 4:

,

откуда

.

Ток в ветви 5 определим по закону Ома:

.

Ток в ветви с идеальной Э.Д.С. определим по 1–му закону Кирхгофа:

.

Ответ: , , , , .

Пример 4.4

  Дано: ; ; ; ; ; . Определить токи в схеме рис. 4.6 методом узловых напряжений.  
Рис. 4.6

Решение

За базисный узел в данной схеме можно принимать 1–ый, 2–ой или 3–ий узлы. Рассмотрим решение задачи в случае, если за базисный принят потенциал 3–го узла. Тогда:

.

Поскольку узлы 1 и 2 связаны с 3–им узлом ветвями, содержащими только идеальные источники Э.Д.С. , то:

;

.

Остаётся определить потенциал 4–го относительно 3–го базисного. Составляем одно уравнение:

,

где

– взаимная проводимость между 1 и 4 узлами;

– взаимная проводимость между 2 и 4 узлами;

– собственная проводимость 4 узла.

Решаем уравнение:

,

откуда:

.

На основании обобщённого закона Ома для участка цепи, определяем токи:

,

откуда

;

;

 

;

;

.

Токи в четвёртой и пятой ветвях определим по 1–му закону Кирхгофа:

;

.

Ответ: , , , , .

Пример 4.5

  Дано: Определить токи в схеме рис. 4.7 методом двух узлов.
Рис 4.7

Решение

За базисный принимаем второй узел: Записываем формулу по методу двух узлов:

где

– узловой ток первого узла;

– собственная проводимость первого узла.

Тогда

;

.

Внимание! В собственной проводимости первого узла отсутствует слагаемое , так как ветвь, содержащая идеальный источник тока, имеет бесконечно большое сопротивление, а значит её проводимость будет стремиться к нулю.

Определим напряжение :

Используя обобщенный закон Ома для участка цепи запишем:

Следовательно, токи в цепи определяются по следующим формулам:

Ответ: