Показатели тесноты связи между качественными признаками

Метод корреляционных таблиц применим не только к количественным, но и к описательным (качественным) признакам, взаимосвязи между которыми часто приходится изучать при проведении различных социологических исследований путем опросов или анкетирования. В этом случае такие таблицы называют таблицами сопряженности. Они могут иметь различную размерность. Простейшая размерность – 2х2 (таблица «четырех полей»), когда по альтернативному признаку («да» – «нет», «хорошо» – «плохо» и т.д.) выделяются 2 группы. В таблице 48 приведены условные данные о распределении 500 опрошенных человек по двум показателям: наличие (отсутствии) у них прививки против гриппа и факт заболевания (незаболевания) гриппом во время его эпидемии.

Таблица 48. Распределение 500 опрошенных человек

Группа лиц Число лиц
заболевших гриппом не заболевших гриппом Итого
Сделавших прививку 30 (а) 270 (b)
Не сделавших прививку 120 (c) 80 (d)
Итого

Нетрудно заметить, что среди сделавших прививку подавляющее большинство (270 из 300, или 90%) не заболели гриппом, а среди не сделавших большая часть заболела (120 из 200, или 60%). Таким образом, можно предположить, что прививка положительно влияет на предупреждение заболевания; другими словами, можно предположить, что распределение в таблице (a, b, c, d) не случайно и существует стохастическая зависимость между группировочными признаками. Однако выводы о зависимости, сделанные «на глаз», часто могут быть ненадежными (ошибочными), поэтому они должны подкрепляться определенными статистическими критериями, например критерием Пирсона χ2. Он позволяет судить о случайности (или неслучайности) распределения в таблицах взаимной сопряженности, а следовательно, и об отсутствии или наличии зависимости между признаками группировки в таблице. Чтобы воспользоваться критерием Пирсона χ2, в таблице взаимной сопряженности наряду с эмпирическими частотами записывают теоретические частоты, рассчитываемые исходя из предположения, что распределение внутри таблицы случайно и, следовательно, зависимость между признаками группировки отсутствует. То есть считается, что распределение частот в каждой строке (столбце) таблицы пропорционально распределению частот в итоговой строке (столбце). Поэтому теоретические частоты по строкам (столбцам) рассчитывают пропорционально распределению единиц в итоговой строке (столбце).

Так, в нашем примере в итоговой строке число заболевших 150 из 500, т.е. их доля – 30%, а доля не заболевших – 70%. Следовательно, теоретические частоты в первой строке для заболевших составят 30% от 300, т.е. 0,3*300=90, а для не заболевших – 0,7*300=210. По второй строке произведем аналогичные расчеты и их результаты занесем в таблицу в скобках.

Таблица 49. Эмпирические и теоретические частоты

Группа I (да) II (нет)
I (да) 30 (90) 270 (210)
II (нет) 120 (60) 80 (140)

На сопоставлении эмпирических и теоретических частот и основан критерий Пирсона χ2, рассчитываемый по формуле (44):

.

Рассчитанное (фактическое) значение χ2 сопоставляют с табличным (критическом), определяемым по таблице Приложения 3 для заданного уровня значимости α и числа степеней свободы , где k1 и k2 – число групп по одному и второму признакам группировки (число строк и число столбцов в таблице).

В рассматриваемом примере ν=(2-1)(2-1)=1, а приняв уровень значимости α=0,01, по таблице Приложения 3 находим χ2табл=6,63. Поскольку рассчитанное значение χ2> χ2табл, значит существует стохастическая зависимость между рассматриваемыми показателями. При независимости признаков частоты теоретического и эмпирического распределений совпадают, а значит χ2=0. Чем больше различия между теоретическими и эмпирическими частотами, тем больше значение χ2 и вероятность того, что оно превысит критическое табличное значение, допустимое для случайных расхождений. Аналогично рассчитываются теоретические частоты и χ2 в таблицах большей размерности.

В корреляционном анализе недостаточно лишь выявить тем или иным методом наличие связи между исследуемыми показателями. Теснота такой связи может быть различной, поэтому весьма важно ее измерить, т.е. определить меру связи в каждом конкретном случае. В статистике для этой цели разработан ряд показателей (коэффициентов), используемых как для количественных, так и для качественных признаков.

Для измерения тесноты связи между группировочными признаками в таблицах взаимной сопряженности могут быть использованы такие показатели, как коэффициент ассоциации и контингенции (для «четырехклеточных таблиц»), а также коэффициенты взаимной сопряженности Пирсона и Чупрова (для таблиц любой размерности).

Применительно к таблице «четырех полей», частоты которых можно обозначить через a, b, c, d, коэффициент ассоциации (Д. Юла) выражается формулой (158):

. (158)

Его существенный недостаток: если в одной из четырех клеток отсутствует частота (т.е. равна 0), то 1, и тем самым преувеличена мера действительной связи.

Чтобы этого избежать, предлагается (К. Пирсоном) другой показатель – коэффициент контингенции[53]:

. (159)

Рассчитаем коэффициенты (158) и (159) для нашего примера (таблица 48):

;

Связь считается достаточно значительной и подтвержденной, если >0,5 или >0,3.

Поэтому в нашем примере оба коэффициента характеризуют достаточно большую обратную зависимость между исследуемыми признаками.

Теснота связи между 2 и более признаками измеряется с помощью коэффициентов взаимной сопряженности Пирсона (160) или Чупрова (161), рассчитываемых на основе показателя χ2 :

, (160) (161)

В нашем примере . Рассчитывать коэффициент Чупрова для таблицы «четырех полей» не рекомендуется, так как при числе степеней свободы ν=(2-1)(2-1)=1 он будет больше коэффициента Пирсона (в нашем примере КЧ=0,54). Для таблиц же большей размерности всегда КЧП.

Множественная корреляция

При решении практических задач исследователи сталкиваются с тем, что корреляционные связи не ограничиваются связями между двумя признаками: результативным y и факторным x. В действительности результативный признак зависит от нескольких факторных. Например, инфляция тесно связана с динамикой потребительских цен, розничным товарооборотом, численностью безработных, объемами экспорта и импорта, курсом доллара, количеством денег в обращении, объемом промышленного производства и другими факторами.

В условиях действия множества факторов показатели парной корреляции оказываются условными и неточными. Количественно оценить влияние различных факторов на результат, определить форму и тесноту связи между результативным признаком y и факторными признаками x1, x2, …, xk можно методами множественной (многофакторной) корреляции.

Математически задача сводится к нахождению аналитического выражения, наилучшим образом описывающего связь факторных признаков с результативным, т.е. к отысканию функции . Выбрать форму связи довольно сложно. Эта задача на практике основывается на априорном теоретическом анализе изучаемого явления и подборе известных типов математических моделей.

Среди многофакторных регрессионных моделей выделяют линейные (относительно независимых переменных) и нелинейные. Наиболее простыми для построения, анализа и экономической интерпретации являются многофакторные линейные модели, которые содержат независимые переменные только в первой степени:

, (162)

где – свободный член;

– коэффициенты регрессии;

– факторные признаки.

Если связь между результативным признаком и анализируемыми факторами нелинейна, то выбранная для ее описания нелинейная многофакторная модель (степенная, показательная и т.д.) может быть сведена к линейной путем линеаризации.

Параметры уравнения множественной регрессии, как и парной, рассчитываются методом наименьших квадратов, при этом решается система нормальных уравнений с (k+1) неизвестным:

(163)

где – значение j-го факторного признака в i-м наблюдении;

– значение результативного признака в i-м наблюдении.

Как правило, прежде чем найти параметры уравнения множественной регрессии, определяют и анализируют парные коэффициенты корреляции. При этом систему нормальных уравнений можно видоизменить таким образом, чтобы при вычислении параметров регрессии использовать уже найденные парные коэффициенты корреляции. Для этого в уравнении регрессии заменим переменные y, x1, x2, …, xk переменными tj, полученными следующим образом:

, . ( ).

Эта процедура называется стандартизацией переменных. В результате осуществляется переход от натурального масштаба переменных xij к центрированным и нормированным отклонениям tij. В стандартизированном масштабе среднее значение признака равно 0, а среднее квадратическое отклонение равно 1, т.е. =0, =1. При переходе к стандартизированному масштабу переменных уравнение множественной регрессии принимает вид

, (164)

где ( ) – коэффициенты регрессии.

Параметры уравнения множественной регрессии в натуральном масштабе и уравнения регрессии в стандартизированном виде взаимосвязаны:

( ). (165)

Нетрудно заметить, что это обычная формула коэффициента регрессии, выраженного через линейный коэффициент корреляции.

Стандартизированные коэффициенты множественной регрессии также вычисляют методом наименьших квадратов, который приводит к системе нормальных уравнений

(166)

где – парный коэффициент корреляции результативного признака y с j-м факторным;

– парный коэффициент корреляции j-го факторного признака с l-м факторным.

После того как получено уравнение множественной регрессии (в стандартизированном или натуральном масштабе), необходимо измерить тесноту связи между результативным признаком и факторными признаками. Для измерения степени совокупного влияния отобранных факторов на результативный признак рассчитывается совокупный коэффициент детерминации R2 и совокупный коэффициент множественной корреляции R – общие показатели тесноты связи многих признаков независимо от формы связи. Приведем несколько формул для их расчета.

1. При линейной форме связи расчет совокупного коэффициента детерминации можно выполнить, используя парные коэффициенты корреляции:

, (167)

где – параметры уравнения множественной регрессии в натуральном масштабе.

2. Еще легче вычислить совокупный коэффициент детерминации, используя уравнение регрессии в стандартизированном виде:

. (168)

3. Через соотношение факторной и общей дисперсий (или остаточной и общей дисперсий):

, или , (169)

где – факторная дисперсия, характеризующая вариацию результативного признака, обусловленную вариацией включенных в анализ факторов; – общая дисперсия результативного признака; – остаточная дисперсия, характеризующая отклонения фактических уровней результативного признака от рассчитанных по уравнению множественной регрессии .

Совокупный коэффициент множественной корреляции R представляет собой корень квадратный из совокупного коэффициента детерминации R2. Пределы его изменения: . Чем ближе его значение к 1, тем точнее уравнение множественной линейной регрессии отражает реальную связь. Иначе говоря, среди отобранных факторов присутствуют те, которые решающим образом влияют на результативный. Малое значение R можно объяснить тем либо тем, что в уравнение множественной регрессии не включены существенно влияющие на результат факторы, либо тем, что установленная линейная форма зависимости не отражает реальной взаимосвязи признаков. Добиться адекватности модели множественной регрессии эмпирическим данным возможно, соответственно, либо включением в уравнение регрессии дополнительных, ранее не учитываемых факторов, либо построением нелинейной модели множественной регрессии.

Для более глубокого знакомства с темой «Множественная корреляция» необходимо воспользоваться литературой курса «Эконометрика».

Контрольные задания

На основе исходных данных контрольных заданий по теме 6 (таблица 38) с использованием таблицы 50 проанализировать взаимосвязь между признаками x и y всеми возможными методами, изложенными в теме 7.

Таблица 50. Распределение вариантов для выполнения контрольного задания

Признак Вариант
x (№ варианта темы 6)
y (№ варианта темы 6)

 


Индексы