Тема 12. (занятие 15) Система одновременных уравнений
Разберите пример.
Изучается модель вида

где
– расходы на потребление в период
,
– совокупный доход в период
,
– инвестиции в период
,
– процентная ставка в период
,
– денежная масса в период
,
– государственные расходы в период
,
– расходы на потребление в период
,
инвестиции в период
.
Первое уравнение – функция потребления, второе уравнение – функция инвестиций, третье уравнение – функция денежного рынка, четвертое уравнение – тождество дохода.
Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.
Модель включает четыре эндогенные переменные
и четыре предопределенные переменные (две экзогенные переменные –
и
и две лаговые переменные –
и
).
Проверим необходимое условие идентификации для каждого из уравнений модели.
Первое уравнение:
содержит две эндогенные переменные
и
и одну предопределенную переменную
. Таким образом,
, а
, т.е. выполняется условие
. Уравнение сверхидентифицируемо.
Второе уравнение:
включает две эндогенные переменные
и
и одну экзогенную переменную
. Выполняется условие
. Уравнение сверхидентифицируемо.
Третье уравнение:
включает две эндогенные переменные
и
и одну экзогенную переменную
. Выполняется условие
. Уравнение сверхидентифицируемо.
Четвертое уравнение:
. Оно представляет собой тождество, параметры которого известны. Необходимости в идентификации нет.
Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.
|
|
|
|
|
|
|
| |
| I уравнение | –1 |
|
| |||||
| II уравнение | –1 |
|
| |||||
| III уравнение | –1 |
|
| |||||
| Тождество | –1 |
В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.
Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
|
|
|
|
| |
| II уравнение | –1 |
|
| ||
| III уравнение | –1 |
| |||
| Тождество |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы
не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
|
|
|
|
| |
| I уравнение | –1 |
|
| ||
| III уравнение |
|
| |||
| Тождество | –1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы
не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
|
|
|
|
| |
| I уравнение | –1 |
| |||
| II уравнение | –1 |
| |||
| Тождество |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы
не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом:
