Пример выполнения задания. Даны схема механизма (рисунок 5а) и следующие исходные данные:

Даны схема механизма (рисунок 5а) и следующие исходные данные:

sr = OM = 5(1 + cos(2pt)), см; φe = 2t + 3t2, рад; t1 = 1/3 с.

 

Рисунок 5 – Схема механизма (а) и схемы для определения абсолютной скорости (б)
и ускорения (в)

 

Решение.

1. Определение положения точки М на теле D в момент t1. Относительное движение точки М по телу D определяется дуговой координатой sr = OM . В момент времени t1 = 1/3 с

sr = OM = 5(1 + cos(2p/3)) = 5(10,5) = 2,5 см.

Положение тела D определяется угловой координатой φe. В момент t1

φe = 2/3+ 3(1/3)2= 1рад.

Положение тела и точки на нем в момент времени t1 показано на рисунке 5б.

2. Определение абсолютной скорости точки М. Абсолютная скорость точки определяется как геометрическая сумма относительной и переносной скоростей: .

Модуль относительной скорости равен , де .

В момент времени t1: см/с; см/с.

Положительный знак алгебраической величины показывает, что вектор относительной скорости направлен в сторону возрастания sr.

Модуль переносной скорости равен , где we – модуль угловой скорости тела в его переносном вращении;

; .

В момент времени t1 рад/с; рад/с.

Положительный знак алгебраической величины показывает, что вращение тела D происходит в направлении отсчета угловой координаты φe (рисунок 5б). Вектор направлен по оси, проходящей через точку О и нормальной плоскости вращения. Поэтому на рисунке 5б вектор , направленный на наблюдателя, проецируется в точку.

Теперь можно определить модуль переносной скорости:

см/с.

Вектор переносной скорости направлен из точки М перпендикулярно ОМ в направлении вращения тела D (согласно ).

Так как векторы и взаимно перпендикулярны, то модуль абсолютной скорости точки М можно определить как

см/с.

Направление вектора абсолютной скорости показано на рисунке 5б.

3. Определение абсолютного ускорения точки М. Абсолютное ускорение точки при сложном движении равно геометрической сумме относительного, переносного и кориолисова ускорений:

или ,

где , – касательная и нормальная составляющие относительного ускорения;

– вращательная и центростремительная составляющие переносного ускорения.

Модуль относительного касательного ускорения равен

, где .

В момент времени t1: см/с2, см/с2. Положительный знак показывает, что вектор направлен в сторону возрастания дуговой координаты sr. А так как знаки и одинаковы, то относительное движение точки М ускоренное (рисунок 5в).

Модуль относительного нормального ускорения , так как траекторией относительного движения является прямая и радиус ее кривизны r = 0.

Модуль переносного вращательного ускорения:

, где – модуль углового ускорения тела в его переносном движении: рад/с2.

Так как знаки алгебраических величин и одинаковы и , то вращение тела D равноускоренное. Вектор направлен так же, как и . Тогда см/с2.

Вектор направлен так же, как и (рисунок 5в).

Модуль переносного центростремительного ускорения:

см/с2.

Вектор направлен к центру вращения, к точке О.

Кориолисово ускорение по определению равно

, а его модуль равен .

В данном случае и . С учетом этого см/с2.

Расположение и направление вектора соответствует определению векторного произведения векторов (см. рисунок 5в). Вектор расположен перпендикулярно плоскости, проходящей через векторы сомножители, и направлен в ту сторону, откуда виден поворот (на меньший угол) первого сомножителя ко второму против вращения часовой стрелки.

Модуль абсолютного ускорения точки найдем способом проекций. Для этого проведем координатные оси x и y (см. рисунок 5в) и спроецируем на них составляющие вектора ускорения:

см/с2; см/с2.

Тогда см/с2.

Динамика

 

Задание Д.1. Вторая (обратная) задача динамики материальной точки

Варианты 1–5 (таблица 9, схема 1).Тело движется из точки А по участку АВ (длиной l) наклонной плоскости, составляющей угол а с горизонтом, в течение t с. Его начальная скорость vA. Коэффициент трения скольжения тела по плоскости равен f.

В точке В тело покидает плоскость со скоростью vB ипопадает со скоростью vc в точку С плоскости BD, наклоненной под углом βк горизонту, находясь в воздухе T с.

При решении задачи тело принять за материальную точку; сопротивление воздуха не учитывать.

Вариант 1. Дано: a= 30°; vA = 0 м/с; f = 0,2; l=10 м; β = 60°. Определить t и h.

Вариант 2. Дано: a= 15°; vA = 2 м/с; f = 0,2; h = 4 м; β = 45°. Определить l и уравнение траектории точки на участке ВС.

Вариант 3. Дано: a= 30°; vA = 2,5 м/с; f ≠ 0; l = 8м; d = 10 м; β= 60°. Определить vB и t.

Вариант 4. Дано: vA = 0; t = 2 с; l = 9,8м; β = 60°; f = 0. Определить a и T.

Вариант 5. Дано: a = 30°; vA = 0; l = 9,8 м; t = 3 с; β = 45°. Определить f и vС.

Варианты 6–10 (таблица 9, схема 2).Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом а к горизонту и имеющего длину l, со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется t с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vС в точке С горы, составляющей угол βс горизонтом.

При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.

Вариант 6. Дано: a = 20°; f = 0,1; t = 0,2 с; h = 40 м; β = 30°. Определить l и Vc.

Вариант 7. Дано: a= 15°; f =0,1; vA = 16м/с; l = 5 м; β=45°. Определить vB и Т.

Вариант 8. Дано: vA = 21 м/с; f = 0; t = 0,3 с; vB = 20 м/с; β = 60°. Определить а и d.

Вариант 9. Дано: a = 15°; t = 0,3 с; f =0,1; h = м; β = 45°. Определить vB и vA.

Вариант 10. Дано: a=15°; f =0; vA=12м/с; d = 50 м; β = 60°. Определить tи уравнение траектории лыжника на участке ВС.

Варианты 11–15 (таблица 9, схема 3). Имея в точке А скорость vA,мотоцикл поднимается t с по участку АВ длиной l, составляющему с горизонтом угол a. При постоянной на всем участке АВ движущей силе Р мотоцикл в точке В приобретает скорость vB и перелетает через ров шириной d, находясь в воздухе T с и приземляясь в точке С со скоростью vС .Масса мотоцикла с мотоциклистом равна т.

При решении задачи считать мотоцикл с мотоциклистом материальной точкой и не учитывать силы сопротивления движению.

Вариант 11. Дано: a = 30°; Р ≠0; l = 40 м; vA = 0: vB = 4,5 м/с; d = 3 м;Определить t и h.

Вариант 12. Дано: a = 30°; Р = 0; l = 40 м; vB = 4,5 м/с; h = 1,5 м. Определить vA и d.

Вариант 13. Дано: a = 30°; т = 400 кг; vA = 0; t = 20 с; d = 3 м; h = 1,5 м. Определить Р и l.

Вариант 14. Дано: a = 30°; т = 400 кг; Р = 2,2 кН; vA = 0; l = 40 м; d = 5м. Определить vB и vС.

Вариант 15. Дано: a = 30°; vA = 0; Р = 2кН; l = 50 м; h = 2 м; d = 4 м. Определить Т и т.

Варианты 16–20 (таблица 9, схема 4).Камень скользит в течение tс по участку АВ откоса, составляющему угол a с горизонтом и имеющему длину l. Его начальная скорость vA. Коэффициент трения скольжения камня по откосу равен f . Имея в точке В скорость vB, камень через Т с ударяется в точке С о вертикальную защитную стену. При решении задачи принять камень за материальную точку; сопротивление воздуха не учитывать.

Вариант 16. Дано: a = 30°; vA = 1 м/с; l = 3 м; f = 0,2; d = 2,5 м. Определить h и Т.

Вариант 17. Дано: a= 45°; l = 6 м; vB = 2·vA; t = 1 с; h = 6 м. Определить d и f.

Вариант 18. Дано: a = 30°; l= 2 м; vA = 0; f = 0,1; d = 3 м. Определить h и t.

Вариант 19. Дано: a = 15°; l = 3 м; vB = 3 м/с, f ≠0; t= 1,5 с; d = 2 м. Определить vA и h.

Вариант 20. Дано: a = 45°; vA = 0; f = 0,3; d = 2 м; h = 4 м. Определить l и t.

Варианты 21–25 (таблица 9, схема 5). Тело движется из точки А по участку АВ (длиной l) наклонной плоскости, составляющей угол a с горизонтом. Его начальная скорость vA. Коэффициент трения скольжения равен f. Через t с тело в точке В со скоростью vB покидает наклонную плоскость и падает на горизонтальную плоскость в точку С со скоростью vС;приэтом оно находится в воздухе Т с.

При решении задачи принять тело за материальную точку и не учитывать силы сопротивления движению.

Вариант 21. Дано: a= 30°; f = 0,1; vA = 1 м/с; t = 1,5 с; h = 10 м. Определить vB и d.

Вариант 22. Дано: vA = 0; a = 45°; l =10 м; t = 2 с. Определить f и уравнение траектории на участке ВС.

Вариант 23. Дано: f =0; vA = 0; l = 9,81 м; t = 2с; h = 20 м. Определить aи Т.

Вариант 24. Дано: vA=0; a=30°; f=0,2; l = 10 м; d = 12 м. Определить t и h.

Вариант 25. Дано: vA = 0; a = 30°; f = 0,2; l=6 м; h=4,5 м. Определить t и vС.

Варианты 26–30 (таблица 9, схема 6). Имея в точке А скорость vA, тело движется по горизонтальному участку АВ длиной l в течение t с. Коэффициент трения скольжения тела по плоскости равен f . Со скоростью vB тело в точке В покидает плоскость и попадает в точкуС со скоростью vС, находясь в воздухе Т с. При решении задачи принять тело за материальную точку; сопротивление воздуха не учитывать.

Вариант 26. Дано: vA = 7 м/с; f = 0,2; l = 8 м; h =20 м. Определить d и vС .

Вариант 27. Дано: vA = 4 м/с; f = 0,1; t = 2 с; d = 2 м. Определить vB и h.

Вариант 28. Дано: vB = 3 м/с; f =0,3; l = 3 м; h = 5 м. Определить vA и Т.

Вариант 29. Дано: vA = 3 м/с; vB = 1 м/с; l = 2,5 м; h = 20 м. Определить f и d.

Вариант 30. Дано: f =0,25; l =4 м; d = 3 м; h = 5 м. Определить vA и t.

Таблица 9 – Рисунки к заданию Д.1

Пример 1 выполнения задания (рисунок 6).

При строительстве железных дорог для защиты кюветов от попадания в них каменных осыпей устраивается «полка» DC. Учитывая возможность движения камня из наивысшей точки А откоса и полагая при этом его начальную скорость vA = 0, определить наименьшую ширину полки b и скорость vC , с которой камень падает на нее. По участку АВ откоса длиной l под углом a к горизонту камень движется t с.

Рисунок 6 – Рисунок к примеру 1 задания Д.1

 

При решении задачи считать коэффициент f трения скольжения камня на участке АВ постоянным, а сопротивлением воздуха пренебречь.

Дано: vA =0; a = 60°; l = 4 м; t =1 с; f ≠ 0; h = 5 м; β = 75°.

Определить b и vC .

Решение.

Рассмотрим движение камня на участке АВ. Принимая камень за материальную точку, отобразим (рисунок 7) действующие на него силы: вес ,нормальную реакцию и силу трения скольжения. Запишем дифференциальное уравнение прямолинейного движения несвободной материальной точки на участке АВ, обозначив x1 через x:

.

Рисунок 7 – Расчетная схема: участок АВ а), участок BC б)

Проекция ускорения на ось Ax1 по определению равна: . Тогда .

Отсюда с учетом :

. (7)

Так как f <1,то проекция ускорения на ось Ax1 положительна и постоянна, т. е. (при этом ), то прямолинейное движение на участке AB – равноускоренное.

Запишем, зная, что по определению , уравнение (7) в дифференциальной форме .

Разделяя переменные интегрирования, получим

.

Интегрируя правую и левую части уравнения совместно, получим .

Константу C1интегрирования найдем по начальным условиям, зная, что в момент начала движения:

, , . (НУAB)

. Откуда .

Физический смысл константы: – проекция начальной скорости точки на ось Ax. Тогда

. (8)

Запишем, зная, что по определению , уравнение (8) в дифференциальной форме: . Разделяя переменные интегрирования, получим .

Интегрируя правую и левую части уравнения совместно, получим .

Константу интегрирования найдем по начальным условиям (НУAB).

. Откуда .

Физический смысл константы: м – начальная абсцисса точки.

Тогда

. (9)

Совокупность уравнений (7)–(9) – уравнения прямолинейного равноускоренного движения несвободной материальной точки на участке AB. Положив , , в уравнениях (8) и (9), получим:

, (8*)

, (9*)

и определим: f, vВ.

Из уравнения (9*) найдем:

.

Решая уравнение (8*), получим:

.

Участок движения BC.

Для движения свободной материальной точки на участке BC запишем основное уравнение динамики в проекциях на оси Bx и By в дифференциальной форме в общем виде:

,

.

По определению , . Тогда: , ,

(10)

Так как ax= 0 – const, ay= g – const,тодвижение:

– по горизонтали на всем участке BCравномерное,

– по вертикали – на всем участке BC равнопеременное – равноускоренное.

Мгновенное, истинное, полное ускорение материальной точки равно:

(10*)

Так как ускорение постоянно и по величине, и по направлению, а угол между касательной mt к траектории и ускорением переменный, то проекция at ускорения на касательную переменна по величине

Поэтому движение материальной точки по кривой BC не есть равнопеременное. На участке BC движение – ускоренное (at >0 – var.).

Запишем, зная, что по определению , , уравнения (10) в дифференциальной форме:

,

.

Разделяя переменные интегрирования, получим: , .

Интегрируя , правую и левую части уравнений совместно, получим: , .

Константы C3и C4 интегрирования найдем по начальным условиям, зная, что в момент начала движения с, м, м,

, (НУBC)

, .

Откуда , . Физический смысл констант интегрирования: , – проекции начальной скорости на оси Bx и By. Тогда

(11)

(12)

Запишем, зная, что по определению , , уравнения (11) и (12) в дифференциальной форме:

,

.

Разделяя переменные интегрирования, получим: , .

Интегрируя , правую и левую части уравнений совместно, получим: , .

Константы и интегрирования найдем по начальным условиям (НУBC): , . Откуда , . Физический смысл констант интегрирования: м, м – начальные координаты материальной точки. Тогда:

(13)

(14)

Совокупность уравнений (11)–(14) – уравнения движения свободной материальной точки на участке BC.

Положив ? c, ? м/с, ? м, 5 м
в уравнениях (12)–(14), получим:

, (12*)

, (13*)

(14*)

и определим: s, ts, vC.

Из уравнения (14*) найдем:

с.

Решая уравнения (12*) и (13*), получим: м/с, м.

Тогда наименьшая ширина полки равна:

м.

Скорость падения материальной точки на землю равна:

м/с.

Пример 2 выполнения задания (рисунок 8).

Стопятидесятидвухмиллиметровая артиллерийская система посылает семидесятивосьмикилограммовый снаряд в цель.

Длина ствола 4 м. Угол наклона ствола к горизонту 45°. Давление пороховых газов в канале ствола 500 МПа. Сопротивление движению снаряда в канале ствола учтено, как трение скольжения (коэффициент трения скольжения равен 0,05).

Определить время движения снаряда в канале ствола и скорость движения снаряда на выходе из ствола.

Определить дальность,продолжительность, наибольшую высоту полета и скорость падения снаряда в цель, а также время подъема снаряда на наибольшую высоту.

Считать силы, действующие на снаряд постоянными, и не учитыватьсопротивление движению снаряда в воздухе.

Рисунок 8 – Рисунок к примеру 2

 

Дано: m=78 кг; l=4 м; a=45°; d=152 мм; p=500 МПа; f=0,05. Определить: tl , vВ, s, ts, h, vC, th

Решение.

Сила давления пороховых газов на снаряд (движущая сила) по величине равна произведению давления газов на площадь поперечного сечения снаряда (канала ствола) диаметром :

Н.

Далее решим задачу, не принимая во внимание размеры и форму снаряда (твердого тела) и рассматривая его как материальную точку массой m.

Построим расчетную схему (рисунок 9). Отметим на схеме текущее положение материальной точки на участке AB и на участке BC, построим скорость и ускорение точки и действующие на нее силы.

Движение несвободной материальной точки на прямолинейном участке AB обусловлено действием сил: . На криволинейном участке BDC свободная материальная точка движется по горизонтали по инерции; по вертикали – снизу вверх по инерции, преодолевая действие силы тяжести на участке BD, и только под действием силы тяжести сверху вниз на участке DC.

Участок движения AB. Запишем основное уравнение динамики (закон пропорциональности силы и ускорения в проекции на ось Ax) в дифференциальной форме в общем виде: .

Рисунок 9 – Расчетная схема: для участка AB – a); для участка BДC – б)

Проекция ускорения на ось Ax по определению равна: . Тогда .

Отсюда с учетом , :

,

, (15)

. (15*)

Так как проекция ускорения на ось Ax постоянна (при этом ), то прямолинейное движение на участке ABравноускоренное.

Запишем, зная, что по определению , уравнение (15) в дифференциальной форме

.

Разделяя переменные интегрирования, получим:

.

Интегрируя правую и левую части уравнения совместно, получим .

Константу C1интегрирования найдем по начальным условиям, зная, что в момент начала движения:

, , , (НУAB)

. Откуда . Физический смысл константы: – проекция начальной скорости точки на ось Ax. Тогда

. (16)

Запишем, зная, что по определению , уравнение (16) в дифференциальной форме: . Разделяя переменные интегрирования, получим .

Интегрируя правую и левую части уравнения совместно, получим .

Константу интегрирования найдем по начальным условиям (НУAB).

. Откуда . Физический смысл константы: – начальная абсцисса точки. Тогда

. (17)

Совокупность уравнений (15)–(17) – уравнения прямолинейного равноускоренного движения несвободной материальной точки на участке AB.

Положив , , в уравнениях (16) и (17), получим:

, (16*)

(17*)

и определим: t, vВ.

Из уравнения (17*) найдем

.

Решая уравнение (2*), получим:

=957 м/с.

Участок движения BDC. Для движения свободной материальной точки на участке BDC запишем основное уравнение динамики в проекциях на оси Bx и By в дифференциальной форме в общем виде:

,

.

По определению , . Тогда: , ,

(18)

Так как ax= 0 – const, ay= -g – const, тодвижение:

– по горизонтали на всем участке BDCравномерное;

– по вертикали – на всем участке BDC равнопеременное (на участке BD – равнозамедленное, на участке DC – равноускоренное).

Истинное, полное ускорение материальной точки равно:

, м/с2 – const. (18*)

Внимание: направления стрелок у символов векторов и (орта оси ординат и ускорения свободного падения) разные.

Так как ускорение , м/с2, – постоянно и по величине, и по направлению, а угол между касательной mt к траектории и ускорением переменный, то проекция at ускорения на касательную переменна и по величине, и по знаку, т. е.

Поэтому движение материальной точки по кривой BDC не есть равнопеременное. На участке BD – движение замедленное(at<0 – var.), на участке DCускоренное (at>0 – var.). В наивысшем положении D движение материальной точки – равномерное (локальное, на мгновение равномерное atD=0).

Запишем, зная, что по определению , , уравнения (18) в дифференциальной форме:

,

.

Разделяя переменные интегрирования, получим: , .

Интегрируя , правую и левую части уравнений совместно, получим: , .

 

Константы C3и C4 интегрирования найдем по начальным условиям, зная, что в момент начала движения: с, м, м,

м/с,

м/с, (НУBDC)

, .

Откуда , .Физический смысл констант интегрирования: м/с, м/с – проекции начальной скорости на оси Bx и By.

Тогда:

м/с2 – const, (19)

(20)

Запишем, зная, что по определению , , уравнения (19) и (20) в дифференциальной форме:

,

.

Разделяя переменные интегрирования, получим:

, .

Интегрируя , правую и левую части уравнений совместно, получим: , .

Константы и интегрирования найдем по начальным условиям (НУBDC).

, . Откуда , . Физический смысл констант интегрирования: м, м – начальные координаты материальной точки. Тогда

, (21)

. (22)

Совокупность уравнений (18)–(22) – уравнения движения свободной материальной точки на участке BDC.

Положив ? с, ? м/с, ? м, м в уравнениях (20)–(22), получим:

, (20*)

, (21*)

(22*)

и определим s, ts, vC.

Из уравнения (22*) найдем:

с.

Решая уравнения (6*) и (7*), получим:

м/с,

км.

Скорость падения материальной точки на землю равна:

м/с.

Положив в уравнении (20) м, получим и найдем время подъема на наибольшую высоту : с.

Положив в уравнении (22) с, ?, найдем наибольшую высоту подъема: 23120 м=23,12 км.

 

Задание Д.6. Применение основных теорем динамики к исследованию движения материальной точки

 

Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости (таблица 10). Найти скорость шарика в положениях В и С и силу давления шарика на стенку трубки в положении С. Трением на криволинейных участках траектории пренебречь. В вариантах 3, 6, 7, 10, 13, 15, 17, 19, 25, 28 и 29 шарик, пройдя путь h0, отделяется от пружины. Необходимые для решения данные приведены в таблице 11.

В задании приняты следующие обозначения: m – масса шарика; uА – начальная скорость шарика; t – время движения шарика на участке АВ (в вариантах 1, 2, 5, 8, 14, 18, 20, 21, 23, 24, 27 и 30) или на участке BD (в вариантах 3, 4, 6, 7, 9–13, 15–17, 19, 22, 25, 26, 28 и 29); f – коэффициент трения скольжения шарика по стенке трубки; h0 – начальная деформация пружины; h – наибольшее сжатие пружины; с – коэффициент жесткости пружины; H – наибольшая высота подъема шарика; s – путь, пройденный шариком до остановки.

Таблица 10 – Схемы механизмов к заданию Д.6

Продолжение таблицы 10

Продолжение таблицы 10

Таблица 11 – Исходные данные к заданию Д.6