Классический подход к понятию вероятности

Определение.Вероятностью события A называется отношение числа исходов N(A), благоприятствующих событию A к полному числу элементарных исходов N:

(3.2.2)

Пример.Рассмотрим опыт с бросанием монеты. Найти вероятность выпадения орла.

Обозначим через A событие, связанное с выпадением орла. В рамках условия задачи всего два элементарных исхода: U1 – выпадение орла, U2 – выпадение решки. Из них благоприятным событию A является только одно. С помощью формулы (8) найдем вероятность события A:

Пример.Рассмотрим элементарные исходы, связанные с бросанием двух монет: H1 – выпадение орла и на первой и на второй монетах, H2 – выпадение решки и на первой и на второй монетах, H3 – выпадение на первой монете решки, а на второй монете – орла, H4 – выпадение на первой монете орла, а на второй монете – решки. Можно ли считать исходы H3 и H4, связанные с выпадением на одной монете орла, а на другой – решки за один исход?

Следовательно, вероятности событий H1 – выпадения орла и на первой и на второй монетах и H2 – выпадение решки и на первой и на второй монетах равны, т. к. только один исход является благоприятствующим этим событиям, а всего элементарных исходов – четыре, используя формулу получим:

Вероятность события H, связанного с выпадением на одной монете орла, а на другой – решки, т. е. события H = H3 + H4 равна , т. к. два исхода являются благоприятными этому событию, а всего элементарных исхода - четыре, используя формулу (8), получим:

Замечание. При бросании 2-х или более монет, кубиков и пр. или одной монеты (кубика) дважды или более они считаются различимыми.

Решение вероятностных задач

С помощью комбинаторики

Пример 1. В урне 5 белых и 4 черных шара. Найти вероятность события: A – вытащить наугад белый шар, B – вытащить наугад два белых шара, C – вытащить наугад один белый и один черный шар, D – два шара одного цвета.

Число всех элементарных исходов при вытаскивании из урны наугад одного шара равно 9 или − числу сочетаний из девяти элементов по одному, т. к. всего шаров в урне 9 и выбрать один из них можно девятью способами. Благоприятствующих событию A исходов – пять или , поскольку белый шар можно вытащить из 5 белых шаров, следовательно, имеем:

Число всех элементарных исходов при вытаскивании из урны наугад двух шаров из 9 равно − числу сочетаний из девяти элементов по два. Учитывая, что число благоприятствующих событию B исходов соответственно равно , получим:

При нахождении вероятности события C – вытащить наугад один белый и один черный шар, число всех элементарных исходов также равно . Число благоприятствующих событию C исходов найдем, используя правило произведения комбинаторики. Множество белых шаров содержит пять элементов, а множество черных – четыре, тогда число пар, образованных из элементов этих множеств, равно произведению количества элементов в этих множествах, т. е. Тогда вероятность события C равна:

Теперь найдем вероятность события D – вытащить два шара одного цвета, которое состоит в выборе наугад двух белых или двух черных шаров. Число всех элементарных исходов по прежнему равно . Используя правило суммы комбинаторики, получим, что число благоприятствующих событию D исходов равно , т. к. число способов выбора двух элементов из множества, содержащего пять элементов или из множества, содержащего четыре элемента (множества не пересекаются) равно сумме числа способов выбора двух элементов из каждого множества. Число всех элементарных исходов по прежнему равно . Учитывая выше изложенное, получим: