Разложение определителя по строке

Основные свойства определителей.

Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).

 

Свойство 1. Определитель не изменяется при транспонировании, т.е.

 

Доказательство.

 

 

=

Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.

 

Свойство 2. При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е.

.

 

Доказательство.

 

Свойство 3. Определитель, имеющий нулевую строку, равен 0.

Доказательство этого свойства следует из свойства 2 при k = 0.

 

Свойство 4. Определитель, имеющий две равные строки, равен 0.

 

Доказательство.

Свойство 5. Определитель, две строки которого пропорциональны, равен 0.

Доказательство следует из свойств 2 и 4.

 

Свойство 6. При перестановке двух строк определителя он умножается на –1.

 

Доказательство.

 

 

Свойство 7.

 

Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.

 

Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

Доказательство следует из свойств 7 и 5.

 

 

Разложение определителя по строке.

 

Определение1. 7. Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.

 

Обозначение: выбранный элемент определителя, его минор.

 

Пример. Для

 

Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i+j есть число четное, или число, противоположное минору, если i+j нечетно, т.е.

 

Рассмотрим еще один способ вычисления определителей третьего порядка – так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:

 

Теорема 1.1. Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.

где i=1,2,3.

Доказательство.

Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.

Найдем алгебраические дополнения к элементам первой строки:

Тогда

Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя.

 

Пример. Вычислим определитель с помощью разложения по первому столбцу. Заметим, что при этом искать не требуется, так как следовательно, и Найдем и Следовательно,

=

 

 

Определители более высоких порядков.

 

Определение1. 9. Определитель n-го порядка

есть сумма n! членов каждый из которых соответствует одному из n! упорядоченных множеств полученных r попарными перестановками элементов из множества 1,2,…,n.

 

Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.

 

Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.

 

Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :

Следовательно,


2. Системы линейных уравнений. Метод Гаусса. Правило Крамера.

Определение 2.1. Линейными операциями над какими-либо объектами называются их сложение и умножение на число.

 

Определение 2.2. Линейной комбинацией переменных называется результат применения к ним линейных операций, т.е. где числа, переменные.

 

Определение 2.3. Линейным уравнением называется уравнение вида

(2.1)

где и b – числа, - неизвестные.

Таким образом, в левой части линейного уравнения стоит линейная комбинация неизвестных, а в правой – число.

 

Определение 2.4. Линейное уравнение называется однородным, если b = 0. В противном случае уравнение называется неоднородным.

 

Определение 2.5. Системой линейных уравнений (линейной системой) называется система вида

(2.2)

где , - числа, - неизвестные, n – число неизвестных, m – число уравнений.

 

Определение 2.6. Решением линейной системы (2.2) называется набор чисел

которые при подстановке вместо неизвестных обращают каждое уравнение системы в верное равенство.