Разложение определителя по строке
Основные свойства определителей.
Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).
Свойство 1. Определитель не изменяется при транспонировании, т.е.
Доказательство.
=
Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.
Свойство 2. При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е.
.
Доказательство.
Свойство 3. Определитель, имеющий нулевую строку, равен 0.
Доказательство этого свойства следует из свойства 2 при k = 0.
Свойство 4. Определитель, имеющий две равные строки, равен 0.
Доказательство.
Свойство 5. Определитель, две строки которого пропорциональны, равен 0.
Доказательство следует из свойств 2 и 4.
Свойство 6. При перестановке двух строк определителя он умножается на –1.
Доказательство.
Свойство 7.
Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.
Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.
Доказательство следует из свойств 7 и 5.
Разложение определителя по строке.
Определение1. 7. Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.
Обозначение: выбранный элемент определителя, его минор.
Пример. Для
Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i+j есть число четное, или число, противоположное минору, если i+j нечетно, т.е.
Рассмотрим еще один способ вычисления определителей третьего порядка – так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:
Теорема 1.1. Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.
где i=1,2,3.
Доказательство.
Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.
Найдем алгебраические дополнения к элементам первой строки:
Тогда
Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя.
Пример. Вычислим определитель с помощью разложения по первому столбцу. Заметим, что при этом искать не требуется, так как следовательно, и Найдем и Следовательно,
=
Определители более высоких порядков.
Определение1. 9. Определитель n-го порядка
есть сумма n! членов каждый из которых соответствует одному из n! упорядоченных множеств полученных r попарными перестановками элементов из множества 1,2,…,n.
Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.
Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.
Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :
Следовательно,
2. Системы линейных уравнений. Метод Гаусса. Правило Крамера.
Определение 2.1. Линейными операциями над какими-либо объектами называются их сложение и умножение на число.
Определение 2.2. Линейной комбинацией переменных называется результат применения к ним линейных операций, т.е. где числа, переменные.
Определение 2.3. Линейным уравнением называется уравнение вида
(2.1)
где и b – числа, - неизвестные.
Таким образом, в левой части линейного уравнения стоит линейная комбинация неизвестных, а в правой – число.
Определение 2.4. Линейное уравнение называется однородным, если b = 0. В противном случае уравнение называется неоднородным.
Определение 2.5. Системой линейных уравнений (линейной системой) называется система вида
(2.2)
где , - числа, - неизвестные, n – число неизвестных, m – число уравнений.
Определение 2.6. Решением линейной системы (2.2) называется набор чисел
которые при подстановке вместо неизвестных обращают каждое уравнение системы в верное равенство.