ИЛИ ПРОСТРАНСТВЕННОМУ ИЗГИБУ
Основные определения
![]() |
![]() |
Косым изгибом называется такой изгиб, при котором вся нагрузка на балку действует в одной плоскости и эта плоскость не совпадает с плоскостями, в которых лежат главные центральные оси инерции сечения (плоскости и
на рис. 5.3). При косом изгибе изогнутая ось представляет собой плоскую кривую и плоскость, в которой она расположена, не совпадает с плоскостью действия нагрузки. При пространственном изгибе нагрузка приложена в разных плоскостях (рис. 5.4), деформированная ось является пространственной кривой.
При косом или пространственном изгибе в сечении стержня возникают четыре усилия: ,
,
и
. Нормальные напряжения в произвольной точке сечения определяются по формуле, полученной из (5.1) при
,
. (5.3)
Касательные напряжения от поперечных сил, если нельзя воспользоваться формулой Журавского, допустимо не учитывать.
Порядок проверки прочности балки, работающей в условиях косого или пространственного изгиба, тот же, что и для балки, работающей при плоском поперечном изгибе. Для этого необходимо:
· построить эпюры внутренних усилий[2]. Для построения эпюр внутренних усилий раскладываем нагрузки на вертикальную и горизонтальную составляющие. Вертикальная составляющая вызывает изгиб относительно горизонтальной оси , горизонтальная – относительно оси
;
· выбрать опасные сечения – сечения, где имеет место наиболее неблагоприятное сочетание изгибающих моментов;
· в опасных сечениях найти опасные точки – точки с максимальными нормальными напряжениями;
· записать условие прочности в этих точках. Из условия прочности либо подобрать размеры поперечного сечения, либо найти допускаемую нагрузку, либо просто сделать вывод о возможности безопасной эксплуатации конструкции.
Определение положения опасных точек в стержне произвольного поперечного сечения производится по схеме, описанной ранее во вступительной части разд. 5. Поскольку в уравнении нейтральной линии
(5.4)
отсутствует свободный член, то нейтральная линия проходит через центр тяжести сечения (рис. 5.5). Построив нейтральную линию и эпюру нормальных напряжений, найдем положение опасных точек. Допустим, что напряжение в точке 1 больше, чем в точке 1¢ (это можно определить по масштабу, если построить сечение и эпюру напряжений в масштабе). Условие прочности в опасной точке 1, которая находится в линейном напряженном состоянии, записывается так:
. (5.5)
Значение зависит от материала, из которого сделана балка, и для хрупкого материала необходимо учесть направление (растягивающее или сжимающее)
.
Для некоторых форм сечений, а именно прямоугольника, двутавра и других сечений, угловые точки которых находятся в углах прямоугольника, нет необходимости для записи условий прочности находить положение опасных точек. Для таких сечений положение опасных точек не зависит от угла наклона нейтральной линии, и опасные точки – это всегда угловые точки сечения. Условие прочности в этих точках записывается следующим образом:
, (5.6)
где и
– моменты сопротивления поперечного сечения относительно главных центральных осей.
![]() |
Перемещения балки, работающей в условиях косого или пространственного изгиба, можно находить любым способом. Обычно это делают методом Максвелла – Мора, перемножая эпюры с помощью правила Верещагина. От вертикальной составляющей нагрузки точки оси балки перемещаются по вертикали (вдоль оси ). Вертикальная составляющая полного прогиба
находится по формуле
. (5.7)
Перемещения точек оси балки вдоль оси
, вызванные горизонтальной составляющей нагрузки, определяются аналогично:
. (5.8)
Эти перемещения для точки оси балки показаны на рис. 5.5. Полное перемещение (отрезок
на рис. 5.5) является геометрической суммой составляющих
и
. Отметим такую закономерность: при косом изгибе отрезок
должен быть в точности перпендикулярен нейтральной линии [2], при пространственном изгибе этот угол, как правило, должен быть близок к
. При косом изгибе плоскость, в которой лежит изогнутая ось стержня, не совпадает с плоскостью действия нагрузки. Это отличает косой изгиб от прямого, при котором плоскость действия нагрузки совпадает с одной из главных плоскостей осей инерции сечения и изогнутая ось лежит в той же плоскости.
Пример расчета балки при пространственном изгибе (задача № 28)
Условие задачи
Балка загружена нагрузкой, показанной на рис. 5.6. Сила кН действует в вертикальной плоскости,
кН – в горизонтальной, пара сил
кН×м – в плоскости, расположенной под углом
к оси
.
Требуется:
1) из условия прочности подобрать номер двутавра;
![]() |
2) найти полное перемещение точки оси балки (см. рис. 5.6);
3) нарисовать сечение балки в масштабе и показать на нем нейтральную линию и полное перемещение точки . Определить угол между нейтральной линией и полным перемещением[3].
Решение
Разложим нагрузку на вертикальную (рис. 5.7, а) и горизонтальную (рис. 5.7, в) составляющие и построим эпюры и
(рис. 5.7, б, г). Чтобы правильно поставить знаки изгибающих моментов, необходимо на рисунках показывать направление осей
и
, так как в соответствии с правилом знаков для изгибающего момента в задачах сложного сопротивления знак момента зависит от направления осей. Эпюры моментов строим со стороны растянутых волокон в той плоскости, в которой действует нагрузка. По эпюрам выбираем опасные сечения. В рассматриваемом примере их два: сечение
, в котором действуют
кН×м и
кН×м, и сечение
с изгибающими моментами
кН×м и
кН×м.
Условие прочности в опасных точках двутавра имеет вид (5.6). Поскольку отношение моментов сопротивления зависит от номера двутавра, а он неизвестен, примем это отношение условно[4] равным 10.
![]() |
Тогда условие прочности (5.6) в опасных точках сечения примет вид
,
где допускаемое напряжение для стали принято = 160 МПа; величины изгибающих моментов переведены из кН×м в кН×см. Из написанного условия прочности найдем необходимый момент сопротивления
см3.
По сортаменту прокатной стали подбираем номер двутавра. Для двутавра № 50 с такими характеристиками: см3 и
см3 условие прочности в опасных точках сечения
кН/см2
не выполняется, поэтому увеличиваем двутавр. Проверим прочность для двутавра № 55, у которого см3 и
см3:
кН/см2.
Убедимся в том, что условие прочности выполняется и в опасных точках опасного сечения :
кН/см2.
Обратите внимание на величину напряжений от изгибающего момента , действующего в горизонтальной плоскости, которую показывает второй член в сумме. Видно, что, несмотря на то, что
в рассмотренном примере существенно меньше
, напряжения от
больше, чем напряжения от
(или они примерно одинаковы). Это говорит об опасности изгиба в горизонтальной плоскости, особенно для двутавров, у которых
.
Найдем перемещение точки . Будем искать по формуле (5.7) сначала вертикальную составляющую перемещения, вызванную вертикальной составляющей нагрузки. Формулу Максвелла – Мора (5.7) интегрируем по правилу Верещагина, перемножая эпюры
и
(рис. 5.7, б, е). Если хотя бы одна эпюра на участке имеет форму трапеции, используем для перемножения правило трапеций [6].
кН×м3.
Аналогично определим по (5.8) горизонтальную составляющую перемещения[5], перемножая эпюры и
(рис. 5.7, г, е).
кН×м3.
Положительные знаки перемещений свидетельствуют о том, что перемещения происходят по направлениям единичных сил, т. е. вертикальное перемещение – вниз (по направлению оси ), горизонтальное – по направлению оси
. Сосчитаем найденные составляющие перемещения (в см), разделив их на соответствующие жесткости.
кН×см2,
кН×см2,
см,
см.
Из сравнения величин и
видно, что горизонтальная составляющая перемещения, даже при небольшой горизонтальной нагрузке, много больше (особенно для двутавра) вертикальной составляющей.
Выполним последнюю часть задачи. Нарисуем сечение балки в масштабе, покажем на нем нейтральную линию и полное перемещение. Уравнение нейтральной линии (5.4) в опасном сечении С имеет вид[6]
или . Нейтральная линия, построенная по этому уравнению, и эпюра нормальных напряжений в сечении
показаны на рис. 5.8. Знаки напряжений соответствуют положительным знакам изгибающих моментов. Угловые точки 1, 1¢ – это опасные точки сечения, в которых мы ранее находили напряжения.
![]() |
Найдем угол (см. рис. 5.8) между нейтральной линией и осью
:
.
Отложим в масштабе найденные ранее вертикальную и горизонтальную
составляющие перемещения с учетом их направления. Полное перемещение точки
– отрезок
на рис. 5.8 равен геометрической сумме
и
. Угол
между полным перемещением и осью
.
Таким образом, угол между полным перемещением и нейтральной линией
, что близко к
.