Дифракция от параллельных лучей на одной щели. Дифракционная решетка и дифракционный спектр
Дифракция света на одной щели
Пусть в непрерывном экране есть щель: ширина щели , длина щели (перпендикулярно плоскости листа) (рис. 9.5). На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы.
Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна .
Если на ширине щели укладывается четное число таких зон, то в точке (побочный фокус линзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:
– условие минимума интенсивности;
– условие максимума интенсивности
Картина будет симметричной относительно главного фокуса точки . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.
Интенсивность света . Как видно из рис. 9.5, центральный максимум по интенсивности превосходит все остальные.
Рассмотрим влияние ширины щели.
Т.к. условие минимума имеет вид , отсюда .
Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.
При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.
Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность.
Дифракционный спектр
Получают с помощью дифракционной решетки.
Спектр появляется попарно несколькими порядками; красный свет дифрагирует сильнее, чем фиолетовый.
Изменение направления светового луча пропорционально длине волны.
14.дифракция рангеновских лучей в пространственной решетки. Пространственной, или трехмерной, дифракционной решеткой называется такая оптически неоднородная среда, в которой неоднородности периодически повторяются при изменении всех трех пространственных координат. Обычные дифракционные решетки, у которых период имеет величину порядка длины световой волны, для наблюдения дифракции рентгеновских лучей неприемлемы, т.к. длины рентгеновских волн в 104 раз меньше световых волн. Пространственной дифракционной решеткой для рентгеновских лучей могут служить кристаллы, у которых расстояние между рассеивающими центрами с длиной волны рентгеновских лучей. В кристаллах атомы расположены упорядочено, образуя трехмерную решетку. Рентгеновские лучи возбуждают атомы кристаллической решетки, вызывая появление вторичных волн, которые интерферируют подобно вторичным волнам от щелей дифракционной решетки. Разбив кристалл на ряд параллельных плоскостей ,проходящих через узлы решетки, можно выделить в нем большое число параллельных атомных слоев.
Пусть падающий пучок рентгеновских лучей образует угол 0 с одной из систем таких плоскостей. Кристаллическую структуру можно рассматривать как объемную дифракционную решетку с периодом d. Разность хода лучей А=2 d sinθ Условие максимума для междуатомной интерференции будет 2 d sinθ = kλ, где к = 1,2,3,.- причем разным к соответствуют разные углы скольжения 9 Для дифракции рентгеновских лучей в кристаллах выражение 2dsinθ=kλ . Изучая дифракцию рентгеновских лучей, можно по измеренным углам для дифракционных максимумов и по известной длине волны монохроматического рентгеновского излучения исследовать внутреннюю структуру кристаллов.
15.понятие о голографии.Голография (от греч. holos grapho – полная запись) – особый способ записи информации. В 1948 г. английский физик (венгр по национальности) Денис Габор высказал идею принципиально нового метода получения объемных изображений объектов. Он предложил регистрировать с помощью фотопластинки не только амплитуды и интенсивности, как с помощью обычной фотографии, но и фазы рассеянных объектом волн, воспользовавшись для этого явлением интерференции волн. Это позволяет избавиться от потери информации при фиксировании оптических изображений. Однако, практическое применение этот способ нашел только после изобретения лазеров – источников света высокой степени когерентности (временнόй и пространственной). В 1963 г. были получены первые лазерные голограммы.
Голограммы обладают следующими особенностями, отличающими их от фотографий.
· Голограмма дает объемное изображение.
· Голограмму можно разбить, и каждый осколок даст изображение. Объясняется это тем, что каждая точка пластинки при экспонировании подвергается действию волн, отраженных от всех точек предмета. При отделении части голограммы, уменьшается число «штрихов» своеобразной дифракционной решетки. Поэтому уменьшается разрешающая способность и интенсивность изображения при восстановлении, но картинка сохраняется.
· При воспроизведении изображения возможно его увеличение или уменьшение. Для увеличения необходимо при воспроизведении использовать излучение с большей частотой, чем при экспозиции. В этом случае масштаб увеличения можно определить по формуле.
· Цветные голограммы получают на толстослойных эмульсиях. При этом экспозиция проводится несколько раз с монохроматическим излучением. На голограмме фиксируется не плоская, а пространственная интерференционная картина и формируется пространственная решетка.
16.естественный и поляризованый свет.Закон Малюса. ЕСТЕСТВЕННЫЙ СВЕТ (неполяризованный свет) - оптическое излучение с быстро и беспорядочно изменяющимися направлениями напряжённости эл.-магн. поля, причём все направления колебаний, перпендикулярные к световым лучам, равновероятны. Соотв. при разложении пучка Е. с. на два линейно поляризованных пучка в любых двух взаимно перпендикулярных направлениях возникают две равные по интенсивности некогерентные компоненты исходного пучка. ПОЛЯРИЗОВАННЫЙ СВЕТ, световые волны, электромагнитные колебания которых распространяются только в одном направлении.
Малюса закон: зависимость интенсивности линейно-поляризованного света после его прохождения через анализатор от угла α между плоскостями поляризации падающего света и анализатора: I=I0cos2α.
17.поляризация при преломление и отражение света.Закон Брюстера.Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера.
Закон Брюстера: tg(Ѳbr)=n21, где n21 — показатель преломления второй среды относительно первой, Ѳbr — угол падения (угол Брюстера).
18.прохождение света через анизотропную среду.двойное лучепреломление.ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ - раздвоение светового луча при прохождении через анизотропную среду, обусловленное зависимостью показателя преломления (а следовательно, и скорости волны) от её поляризации и ориентации волнового вектора относительно кристаллографич. осей, т. е. от направления распространения
19.поляризованные приборы.призма николя .дихроизм.Поляризационные приборы предназначаются для обнаружения, анализа, получения и преобразования поляризованного оптического излучения (света), а также для различных исследований и измерений, основанных на явлении поляризации света. К 1-й из двух категорий, на которые разделяют П. п., относятся простейшие устройства для получения и преобразования поляризованного света — линейные и циркулярные Поляризаторы (П), фазовые пластинки, компенсаторы оптические (См. Компенсатор оптический), деполяризаторы и пр. 2-я категория П. п. — более сложные конструкции и установки для количественных поляризационно-оптических исследований. В качестве элементов в них входят П. п. 1-й категории, а также Приёмники света, Монохроматоры, вспомогательные электронные устройства и многие др.
Призма Николя— поляризационное устройство, в основе принципа действия которого лежат эффекты двойного лучепреломления и полного внутреннего отражения. Призма Николя представляет собой две одинаковые треугольные призмы из исландского шпата, склеенные тонким слоем канадского бальзама. Призмы вытачиваются так, чтобы торец был скошен под углом 68° относительно направления проходящего света, а склеиваемые стороны составляли прямой угол с торцами. При этом оптическая ось кристалла (AB) находится под углом 64° с направлением света.Апертура полной поляризации призмы составляет 29°. Особенностью призмы является изменение направления выходящего луча при вращении призмы, обусловленное преломлением скошенных торцов призмы. Призма не может применяться для поляризации ультрафиолета, так как канадский бальзам поглощает ультрафиолет.
Дихрои́зм — термин в оптике, описывающий принципиально различные явления:
Дихрои́зм, интерференционный дихроизм — способность материала или оптической системы делить световой поток на две (и более) части по длине волны светового излучения (цвету) с малыми относительно величины исходного потока его потерями.
20) Интерференция плоскополяризованных волн. Метод фотоупругости/ анализ упругих напряжений. Искусственная анизотропия, эффект Керра.
Фотоупругость, фотоэластический эффект, пьезооптический эффект — возникновение оптической анизотропии в первоначально изотропных твёрдых телах (в том числе полимерах) под действием механических напряжений.
Метод фотоупругости - это метод определения внутренних напряжений в прозрачных, в ненапряженном состоянии, изотропных, телах.
В методе фотоупругости используется тот факт, что за механические и оптические свойства тела отвечают одни объекты - валентные электроны. От подвижности валентных электронов зависит показатель преломления. При появлении механического напряжения в теле соответствующие валентные электроны (в соответствующих атомах, в соответствующих направлениях) смещаются, или, еще говорят, меняют свою плотность. Как следствие, для соответствующих поляризаций света, распространяющегося в соответствующих направлениях, меняется показатель преломления. Чем больше напряжения, тем больше изменение показателя преломления. По изменениям показателя преломления определяются механические напряжения.
Если внутренние напряжения, обусловленные внешней нагрузкой, более или менее успешно рассчитываются известными методами (например, методом конечных элементов), то внутренние остаточные напряжения, которые тела приобретают в процессе своего создания и существования, можно определить на сегодняшний день только экспериментально. Тут метод фотоупругости - один из лучших помощников.
Оптический анализ упругих напряжений
Получение больших пластин поляроида резко расширило возможности исследования различных технических сооружений путем использования так называемого фотоанализа упругих напряжений. Вообще говоря, этой методике уже свыше 40 лет, но по-настоящему широкое распространение она получила лишь сейчас. Теоретические расчеты, которые позволяют судить о напряжениях, возникающих в сложных по форме технических объектах, подвергаемых различным силовым воздействиям (это может быть, например, поршень или пластинка с прорезями или отверстиями), часто оказываются невероятно трудными. Вместо проведения расчетов делают модель объекта из прозрачной пластмассы. Материал для модели подбирают таким образом, что, когда его подвергают деформациям, он становится двоякопреломляющим. Есла такую находящуюся под действием деформирующих сил модель поместить между скрещенными поляроидами (которые задерживают весь пропускаемый свет), то свет будет проходить только в областях двойного лучепреломления. В резулвтате возникают цветные полосы, число и форма которых зависят от напряжений в соответствующих местах модели. Так можно изучать распределение напряжений в случаях, слишком трудных для тебрётйвеского анализа.
Искусственная анизотропия
Двойное лучепреломление можно наблюдать и в изотропных средах (аморфных телах), если подвергнуть их механическим нагрузкам.
Изотропное тело, подвергнутое упругим деформациям, может стать анизотропным и изменить состояние поляризации проходящего света. Это явление, открытое в 1818 г. Брюстером, получило название фотоупругости или пьезооптического эффекта. При одностороннем растяжении или сжатии тело становится подобным одноосному кристаллу с оптической осью, параллельной направлению приложенной силы. Мерой возникающей при этом оптической анизотропии служит разность показателей преломления обыкновенного и необыкновенного лучей. Опыт показывает, что эта разность пропорциональна напряжению в данной точке тела. От этого напряжения будет зависеть разность показателей преломления: , где k – коэффициент пропорциональности, зависящий от свойств вещества.
Поместим стеклянную пластинку Q между двумя поляризаторами Р и А
В отсутствие механической деформации свет через них проходить не будет. Если же стекло подвергнуть деформации, то свет может пройти, причем картина на экране получится цветная. По распределению цветных полос можно судить о распределении напряжений в стеклянной пластинке
Это явление широко используется для определения прочности деталей. Помещая прозрачные фотоупругие модели между поляризатором и анализатором и подвергая их различным нагрузкам, можно изучать распределения возникающих внутренних напряжений.
Явление искусственной анизотропии может возникать в изотропных средах под воздействием электрического поля (эффект Керра). На рис. 11.16 изображена так называемая ячейка Керра.
Если поляризаторы скрещены, то в отсутствие поля свет через ячейку Керра не проходит. В электрическом поле между пластинками конденсатора жидкость (используется обычно нитробензол) становится анизотропной. Свет, прошедший через кювету, поворачивает плоскость поляризации, и система становится прозрачной. Ячейка Керра может служить затвором света, который управляется потенциалом одного из электродов конденсатора, помещенного в ячейку.
На основе ячеек Керра построены практически безынерционные затворы и модуляторы света с временем срабатывания до 10-12 с.
Величина двойного лучепреломления прямо пропорциональна квадрату напряжённости электрического поля: (закон Керра). Здесь n - показатель преломления вещества в отсутствие поля, , где и - показатели преломления для необыкновенной и обыкновенной волн, k - постоянная Керра.
21.Врещение плоскости поляризации. Вращение плоскости поляризации света, поворот плоскости поляризации линейно поляризованного света при его прохождении через вещество. В. п. п. наблюдается в средах, обладающих двойным круговым лучепреломлением, т. е. различными показателями преломления для право- и левополяризованных по кругу лучей Линейно поляризованный пучок света можно представить как результат сложения двух лучей, распространяющихся в одном направлении и поляризованных по кругу с противоположными направлениями вращения. Если такие два луча распространяются в теле с различными скоростями, то это приводит к повороту плоскости поляризации суммарного луча. В. п. п. может быть обусловлено либо особенностями внутренней структуры вещества, либо внешним магнитным полем. В. п. п. наблюдается, как правило, в оптически изотропных телах (кубические кристаллы, жидкости, растворы и газы). Явлением В. п. п. пользуются для исследования структуры вещества и определения концентрации оптически-активных молекул (например, сахара) в растворах, а также в ряде оптических приборов (оптические модуляторы, затворы, вентили, квантовые гироскопы и т.п.).