Дефект масс, энергия связи и устойчивость атомных ядер. Правило смещения. Гамма-лучи, их происхождение и спектры. Механизм поглощения гамма-лучей веществом

1) Дефе́кт ма́ссы — разность между массой покоя атомного ядра данного изотопа, выраженной в атомных единицах массы, и массовым числом данного изотопа. В современной науке для обозначения этой разницы пользуются термином избыток массы (англ. mass excess). Как правило, избыток массы выражается в кэВ.

2) Энергия связи.Большая энергия связи нуклонов, входящих в ядро, говорит о существовании ядерных сил, поскольку известные гравитационные силы слишком малы, чтобы преодолеть взаимное электростатическое отталкивание протонов в ядре. Связь нуклонов осуществляется чрезвычайно короткоживущими силами, которые возникают вследствие непрерывного обмена частицами, называемыми пи-мезонами, между нуклонами в ядре.

Экспериментально было обнаружено, что для всех стабильных ядер масса ядра меньше суммы масс составляющих его нуклонов, взятых по отдельности. Эта разница называется дефектом массы или избытком массы и определяется соотношением:

где и — массы свободного протона и нейтрона, — масса ядра.

Согласно принципу эквивалентности массы и энергии дефект массы представляет собой массу, эквивалентную работе, затраченной ядерными силами, чтобы собрать все нуклоны вместе при образовании ядра. Эта величина равна изменению потенциальной энергии нуклонов в результате их объединения в ядро.

Энергия, эквивалентная дефекту массы, называется энергией связи ядра и равна:

где — скорость света в вакууме.

Другим важным параметром ядра является энергия связи, приходящаяся на один нуклон ядра, которую можно вычислить, разделив энергию связи ядра на число содержащихся в нём нуклонов:

Эта величина представляет собой среднюю энергию, которую нужно затратить, чтобы удалить один нуклон из ядра, или среднее изменение энергии связи ядра, когда свободный протон или нейтрон поглощается в нём.

Как видно из поясняющего рисунка, при малых значениях массовых чисел удельная энергия связи ядер резко возрастает и достигает максимума при (примерно 8,8 Мэв). Нуклиды с такими массовыми числами наиболее устойчивы. С дальнейшим ростом средняя энергия связи уменьшается, однако в широком интервале массовых чисел значение энергии почти постоянно ( МэВ), из чего следует, что можно записать .

Такой характер поведения средней энергии связи указывает на свойство ядерных сил достигать насыщения, то есть на возможность взаимодействия нуклона только с малым числом «партнёров». Если бы ядерные силы не обладали свойством насыщения, то в пределах радиуса действия ядерных сил каждый нуклон взаимодействовал бы с каждым из остальных и энергия взаимодействия была бы пропорциональна , а средняя энергия связи одного нуклона не была бы постоянной у разных ядер, а возрастала бы с ростом .

Общая закономерность зависимости энергии связи от массового числа описывается формулой Вайцзеккера в рамках теории капельной модели ядра.

3) Устойчивость ядер. Из факта убывания средней энергии связи для нуклидов с массовыми числами больше или меньше 50-60 следует, что для ядер с малыми энергетически выгоден процесс слияния — термоядерный синтез, приводящий к увеличению массового числа, а для ядер с большими — процесс деления. В настоящее время оба этих процесса, приводящих к выделению энергии, осуществлены, причём последний лежит в основе современной ядерной энергетики, а первый находится в стадии разработки.

Детальные исследования показали, что устойчивость ядер также существенно зависит от параметра — отношения чисел нейтронов и протонов. В среднем для наиболее стабильных ядер[10] , поэтому ядра лёгких нуклидов наиболее устойчивы при , а с ростом массового числа всё более заметным становится электростатическое отталкивание между протонами, и область устойчивости сдвигается в сторону (см. поясняющий рисунок).

Если рассмотреть таблицу стабильных нуклидов, встречающихся в природе, можно обратить внимание на их распределение по чётным и нечётным значениям и . Все ядра с чётными значениями этих величин являются ядрами лёгких нуклидов , , , . Среди изобар с нечётными A, как правило, стабилен лишь один. В случае же чётных часто встречаются по два, три и более стабильных изобар, следовательно, наиболее стабильны чётно-чётные, наименее — нечётно-нечётные. Это явления свидетельствует о том, что как нейтроны, так и протоны, проявляют тенденцию группироваться парами с антипараллельными спинами, что приводит к нарушению плавности вышеописанной зависимости энергии связи от [1].

Таким образом, чётность числа протонов или нейтронов создаёт некоторый запас устойчивости, который приводит к возможности существования нескольких стабильных нуклидов, различающихся соответственно по числу нейтронов для изотопов и по числу протонов для изотонов. Также чётность числа нейтронов в составе тяжёлых ядер определяет их способность делиться под воздействием нейтронов[2].

4) Правило смещения: при а-распаде ядро теряет положительный заряд 2е, и его масса убывает приблизительно на 4 а.е.м.; при b-распаде заряд ядра увеличивается на 1е, а масса не изменяется.

5) Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны — < 5·10−3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.

Гамма-квантами являются фотоны с высокой энергией. Считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (см. Изомерный переход, энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях

6) При прохождении через вещество пучок г-лучей уменьшает свою интенсивность. Это ослабление пучка связано, с одной стороны, с поглощением фотонов веществом, а с другой стороны — с их рассеянием. Ослабление параллельного пучка данного г-излучения в каком-нибудь веществе характеризуется линейными коэффициентами ослабления