Область применения программы. Общеобразовательной учебной дисциплины

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГОРОДА МОСКВЫ

«ШКОЛА 2057»

(ГБОУ школа 2057)

 

РАБОЧАЯ ПРОГРАММа

Общеобразовательной учебной дисциплины

АЛГЕБРА

для основного общего образования

На базе 8 классов

 

 

Москва

Год

ОДОБРЕНА предметной (цикловой) комиссией математических и естественно-научных дисциплин   Протокол № _1___ от «31» _____08____ 2015г.   Разработана на основе Федерального компонента государственного образовательного стандарта общего образования  

 

  Председатель цикловой комиссии   _________________Мокрова И. И.   Заместитель директора по учебно- методической работе ___________________Букрееева И.И.  

Подпись Ф.И.О. Подпись Ф.И.О.

 

Автор: Серая И.М.,

преподаватель математики

 

ГБПОУ МТК

 

 

Рецензенты: ___________________________________

 

__________________________________

 

СОДЕРЖАНИЕ

стр.

1. Паспорт рабочей программы учебной дисциплины…………………………..4

 

2. Структура и примерное содержание учебной дисциплины………………….12

 

3. Условия реализации программы учебной дисциплины……………………...13

 

4. Контроль и оценка результатов освоения учебной дисциплины…………....19

 

ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ ОБЩЕОБРАЗОВАТЕЛЬНОЙ УЧЕБНОЙ ДИСЦИПЛИНЫ АЛГЕБРА.

Область применения программы

Настоящая программа по алгебре для основной общеобразовательной школы 8 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), примерной программы для общеобразовательных школ по математике к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А.Бурмистрова – М: Просвещение, 2009. – с. 22-60).

 

1.2 Цели и задачи общеобразовательной учебной дисциплины – требования к результатам освоения дисциплины:

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

· развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

· овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

· изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

· развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

· получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

· развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

· сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В курсе алгебры 8 класса расширяются сведения о свойствах функций, познакомить обучающихся со свойствами и графиком квадратичной функции; систематизируются и обобщаются сведения о решении целых и дробных рациональных уравнений с одной переменной, формируется умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а 0; вырабатывается умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; даются понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида; знакомятся обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; вводятся понятия относительной частоты и вероятности случайного события.

Согласно Федерального базисного учебного плана на изучение алгебры в 9 классе отводится не менее 204 часов из расчета 6 ч в неделю.

Цели изучения:

· овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

· интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

· формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

· воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

· развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса обучающиеся овладевают приёмами вычислений на калькуляторе.

В результате изучения курса алгебры 8 класса обучающиеся должны:

Знать/понимать

В ходе преподавания алгебры в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера,разнообразными способами деятельности,приобретали опыт:

 

· существо понятия математического доказательства; примеры доказательств;

· существо понятия алгоритма; примеры алгоритмов;

· как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

· как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

· как потребности практики привели математическую науку к необходимости расширения понятия числа;

· вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

· каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

· смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

 

Арифметика

Уметь

· выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

· переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

· выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

· округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

· пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

· решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

· использовать приобретенные знания и умения в практической деятельности и повседневной жизнидля:

· решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

· устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

· интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

Уметь

· составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

· выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

· применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

· решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

· решать линейные и квадратные неравенства с одной переменной и их системы;

· решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

· изображать числа точками на координатной прямой;

· определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

· распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

· находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

· определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

· описывать свойства изученных функций (у=кх,где к0, у=кх+b, у=х2, у=х3, у=, у=), строить их графики;

· использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

· моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

· описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

· интерпретации графиков реальных зависимостей между величинами.