IV. Изучение нового материала. Несмотря на то что определение окружности учащимся не дается, необходимо познакомить их со свойством точек окружности
Несмотря на то что определение окружности учащимся не дается, необходимо познакомить их со свойством точек окружности.
Подготовительное упражнение.
Учитель отмечает на доске какую-нибудь точку и обозначает ее буквой О (учащиеся выполняют то же самое в своих тетрадях). Далее учитель отмечает сначала одну, затем другую, третью, четвертую точки, каждая из которых находится на расстоянии 2 см от точки О. При этом можно использовать линейку или циркуль.
В результате получится такой чертеж:
– Можно отметить еще очень много точек, каждая из которых находится на расстоянии 2 см от точки О. Давайте представим себе, что нам удалось отметить все такие точки. Все точки, находящиеся на расстоянии 2 см от точки О, образуют фигуру, которую называют словом «окружность». Чтобы изобразить окружность, не нужно отмечать все точки, для этого нам понадобится циркуль. Посмотрите, как нужно правильно им пользоваться.
Отмечаем точку О; она будет центром окружности. Берем циркуль и немного разводим в стороны концы его ножек (не обязательно на 2 см, можно взять любое расстояние). Держа циркуль правой рукой (покажите), ставим в точку О ножку циркуля с иглой. Чуть отклоняя циркуль, поворачиваем ножку с карандашом вокруг точки О, касаясь карандашом доски. Получается окружность.
Теперь вы сами попробуйте начертить окружность в тетрадях. Отмечайте центр окружности. Далее берите циркуль. Проводя окружность, придерживайте тетрадь левой рукой. Окружность чертить трудно, поэтому придется потренироваться. Изобразите несколько окружностей.
– Рассмотрите чертеж на доске.
– На какие две группы можно разделить фигуры на рисунке?
– Запишите номера и общее название фигур каждой группы.
I группа – это линии (2, 4, 5, 6);
II группа – это фигуры (1, 3, 7, 8).
– Разделите эти же фигуры на 2 группы по другому признаку. Запишите номера фигур новых групп и объясните, в чем сходство фигур каждой группы.
I группа – это линии, которые являются границей круга, т. е. окружности (2).
II группа – это линии, которые являются границей овала (4, 5, 6).
III группа – фигуры, которые являются кругами (3, 7).
IV группа – фигуры, которые являются овалами (1, 8).
– Рассмотрите рисунок. Что здесь изображено? (Рис. а – круг, рис. б – окружность.)
– Каким инструментом удобно чертить окружность?
– Как называется точка О? (Центр окружности.)
– Отметьте любую точку на окружности. Соедините отрезком центр окружности с этой точкой. Этот отрезок называют радиусом.
Если соединить любую точку окружности с ее центром, то получится отрезок, который называется радиусом окружности. |
– Постройте еще несколько радиусов этой окружности.
– Назовите радиусы на чертеже. (ОА, ОВ, ОС, OD, ОЕ.)
– Сколько радиусов можно провести в одной и той же окружности?
– Измерьте длину каждого радиуса. Почему все радиусы окружности имеют одну и ту же длину?
Задание № 1(с. 72).
– Какие предметы похожи на окружность? (Обруч, колесо, солнце и т. д.)
– Рассмотрите чертеж (с. 72 учебника).
– Покажите концом указки окружность (конец указки должен скользить по окружности).
– Покажите центр окружности. (Это точка.)
– Покажите радиус окружности. (Это отрезок.)
– Рассмотрите правую часть чертежа. Что здесь изображено? (Способ построения окружности с длиной радиуса 4 см.)
– Расскажите о порядке работы.
– Выполните данное построение окружности на доске и в тетрадях.
Задание № 2(с. 72).
Используя циркуль, учащиеся строят в тетради три разные окружности.
– Отметьте центр каждой окружности.
– Укажите длину радиуса.
Задание № 3(с. 72).
Перед выполнением задания необходимо обсудить с учащимися план построения окружности.
1. Отметить произвольную точку О – центр окружности.
2. Установить расстояние между ножками циркуля, равное 5 см, то есть длине радиуса окружности.
3. Выполнить построение окружности.
Задание № 4(с. 72).
Учащиеся строят окружность и проводят в ней три радиуса.
– Сколько еще радиусов можно провести для этой окружности?