Связь между свойствами сплавов и типом диаграммы состояния

Как известно, вид диаграммы состояния зависит от того, какие фазы образуют оба компонента. Свойства сплава также зависят от того, какие соединения или какие фазы образовали компоненты сплава.

Поэтому очевидно, что между видом диаграммы состояния и свойствами сплава должна существовать определенная связь. На рис. приведены четыре основных типа диаграмм состояний и соответствующие им закономерности изменения свойств сплава с изменением концентрации :

1. При образовании смесей (рис. а) Свойства сплава изме няются по линейному закону (аддитивно). Следовательно, значени свойств сплава находятся в интервале между свойствами чистых ком понентов.

2. При образовании твердых растворов (рис. б)свойств сплава изменяются по криволинейной зависимости, причем некото рые свойства, в первую очередь электросопротивление, могут значи тельно отличаться от свойств компонентов. Следовательно, при образовании механической смеси электросопротивление повышается незначительно, при образовании твердого раствора — весьма сильно. Поэтому распад твердого раствора на две (или более) фазы приводит к повышению электропроводности (закон Курнакова).

3. При образовании ограниченных твердых растворов (рис. в ) свойства в интервале концентраций, отвечающем однофазным твердым растворам, изменяются по криволинейному, а в двухфазной области диаграммы — по прямолинейному закону, причем крайние точки на прямой являются свойствами чистых фаз, предельно насыщенных твердых растворов, образующих данную смесь.

4. При образовании химического соединения на диаграмме концентрация — Свойства (рис. г) концентрация химического соединения отвечает максимуму (или минимуму) на кривой (в данном случае перелом прямой). Эта точка перелома, соответствующая химическому соединению, называется сингулярной (особой) точкой. По диаграмме состав —свойства находим стехиометрическое соотношение компонентов данного химического соединения определяя, какой концентрации отвечает сингулярная точка.

Точное изучение свойств в зависимости от изменения концентраций (т. е. построение диаграммы состав—свойства) является важным дополнением при изучении и построении диаграмм состояний.

Метод изучения изменений свойств в зависимости от изменения состава и построения диаграммы состав — Свойства был положен Н. С. Курнаковым в основу разработанного им физико-химического анализа сплавов. В настоящее время физико-химический анализ является одним из основных методов изучения сплавов и его широко применяют в научных исследованиях новых сплавов при изучении структурных превращений и в других случаях.

 

3.Н.С. Курнаков показал определенную зависимость между составом и структурой сплава, определяемой типом диаграммы состояния и свойствами сплава (твердостью, электропроводностью и.т.д.).

Свойства сплава зависят от того, какие соединения или какие фазы образовали компоненты сплава (рис. 1).

K

 

 

S

 

 

Е

 

 

N

 

 

Е

 

Рисунок 1. Свойства сплавов и их диаграммы состояния

При образовании непрерывного ряда твердых растворов свойства (твердость, электропроводность и др.) изменяются по криволинейной зависимости (рис. 1, б).

Твердость компонентов А и В ниже, чем твердость сплавов.

При образовании смесей (рис. 1, а) свойства сплава изменяются по линейному закону (аддитивно).

Значение свойств сплавов находятся в интервале между свойствами чистых компонентов.

При увеличении Vохл происходит измельчение структуры, в связи с этим свойства против эвтектики оказываются более высокими (пунктирная линия).

ESK – линия эвтектического превращения.

ТА – температура плавления компонента А.

ТАВ – линия ликвидус.

В сплавах с ограниченной растворимостью (рис. 1, в; диаграммы с эвтектическим или перитектическим превращениями) свойства при концентрациях, отвечающих однофазовому твердому раствору изменяются по криволинейной зависимости, а в двухфазовой области – по прямой. Крайние точки на прямой являются свойствами предельно насыщенных твердых растворов.

Линия EN – линия ограниченной растворимости В в А.

При образовании химического соединения (рис. 1, г) на кривой концентрация – свойства, будет иметься максимум (или минимум) – а на прямой перелом.

Зная характер взаимодействия между двумя металлами и тип диаграммы состав – свойства, можно легче и быстрее определить состав сплава, обеспечивающий наилучшие свойства.

 

 


1. Явление полиморфизма в металлах.

Скорость кристаллизации определяется числом зарождающихся центров кристаллизации n и скоростью их роста m . В отсутствии переохлаждения m,n=0. По мере увеличения степени переохлаждения, происходит увеличение числа центров кристаллизации и скорости их роста, причем число n увеличивается быстрее m. Это связано с тем, что с увеличением степени переохлаждения уменьшается критический размер зародыша и их количество. Однако с увеличением степени переохлаждения уменьшается скорость диффузионных процессов, контролирующих рост зародыша. Практически процесс кристаллизации осуществляется по восходящим ветвям. Нисходящие ветви не реализуются, т.к. металл кристаллизуется при постоянной температуре.

Возможное существования металлов в различных кристаллизационных модификациях называется полиморфизмом или аллотропией. При определенных условиях, атомы, образующие кристаллическую решетку одного типа, перестраиваются с образованием кристаллической решетки другого типа. По сути это кристаллизационный процесс, т.к. перенастройка решетки из одного типа в другой происходит при постоянной температуре. Однако, т.к. этот процесс имеет место в твердом состоянии его называют перекристаллизацией. К полиморфным металлам относятся: железо, олово, титан, марганец, кобольт.
В частности железо имеет 2 модификации: ?-Fe – до 911 0С, от 911 – 13920С – ?- железо (ГЦК). Температурным полиморфизмом обладают около 30 металлов (Fe, Co, Zr , Pb). Быстрое охлаждение иногда может сохранить высокотемпературную модификацию при 25-30 С в течение длительного времени, т.к при этих температурах очень низкая диффузионная подвижность атомов не позволяет произвести их перестройку. При нагреве до 2000 С и давлением до 1010 Па углерод полиграфита перекристаллизовывается в алмаз.При очень больших давлениях в Fe обнаруживается низкотемпературная модификация Fe с ГПУ решеткой. Увеличение давления приводит к превращению менее упакованной структуры в более плотную.
Справка:
Кристаллическая решетка – решетка, составленная тремя системами параллельных линий, проходящих через центр атомов. Весьма удобно распределение атомов в кристалле изображать в виде пространственных схем, так называемых элементарных кристаллических решетках. Под элементарными кристаллическими решетками понимают наименьший комплекс атомов, которые при многократном повторении в пространстве позволяет получить пространственную кристаллическую решетку.

Полиморфизмом обладает примерно половина всех металлов. Наибольшее число полиморфных модификаций (6) у плутония. 4 - у Mn. У 7 металлов, в том числе урана, три модификации. У 29 металлов – 2 кристаллические модификации. Среди диморфных металлов такие широко используемые, как Fe, Ti, Sn.

Полиморфизм Fe сыграл выдающуюся роль в истории человеческой цивилизации: ведь именно благодаря ему сталь можно подвергать закалке, а широкое использование закаленной стали означало переход от бронзового века к железному.

Полиморфные модификации обозначают греческими буквами  ,  , и т.д. – по возрастанию температурного интервала их существования (например  –Fi и  –Ti).

2.Понятие фазы Фазой называется макроскопическая физическая однородная часть вещества, отделенная отостальных частей системы границами раздела, так что она может быть извлечена из системы механическим путем. Допустим, например, что в закрытом сосуде заключена некая масса воды, над которой находится смесь воздуха с водяными парами. Эта система является двухфазной. Она состоит из двух фаз: жидкой (вода) и газообразной (смесь воздуха с водяными парами).

Если бы воздуха не было, то в системе также было бы две фазы: жидкая (вода) и газообразная (водяные пары). Бросим в воду кусочки льда. Система превратится в трехфазную и будет состоять из твердой фазы (лед), жидкой (вода) и газообразной (смесь воздуха с водяными парами). Добавим к воде некоторое количество спирта. Число фаз не изменится, так как вода смешивается со спиртом, образуя физически однородную жидкость. Однако, если воде добавить ртуть, то последняя не смешивается

с водой, и получается система с двумя жидкими фазами: ртутью и водой. Газообразная фаза по–прежнему будет одна; она состоит из смеси воздуха, паров воды и паров ртути. Бросив в воду кусочки поваренной соли, получим систему с двумя твердыми фазами: льдом и твердой поваренной солью. При подсчете числа фаз не имеет значение, является ли та или иная фаза единым телом или состоит из нескольких частей, отделенных одна от другой. Так, капельки тумана в воздухе образуют вместе с ним



lude $_SERVER["DOCUMENT_ROOT"]."/cgi-bin/footer.php"; ?>