Получение твердых сплавов методом порошковой металлургии

1. Получение порошков карбидов и кобальта методом восстановления из оксидов.

2. Измельчение порошков карбидов и кобальта (производится на шаровых мельницах в течение 2-3 суток) до 1-2 микрон.

3. Просеивание и повторное измельчение при необходимости.

4. Приготовление смеси (порошки смешивают в количествах, соответствующих химическому составу изготавливаемого сплава).

5. Холодное прессование (в смесь добавляют органический клей для временного сохранения формы).

6. Спекание под нагрузкой (горячее прессование) при 1400 °C (при 800—850 °C клей сгорает без остатка). При 1400 °C кобальт плавится и смачивает порошки карбидов, при последующем охлаждении кобальт кристаллизуется, соединяя между собой частицы карбидов.

Примеры маркировки:

Сталь 15кп - углеродистая конструкционная качественная сталь с содержанием 0,15% углерода, кипящая;

Сталь З0Л - углеродистая конструкционная качественная сталь с содержанием углерода 0,30%,спокойная, применяется для деталей получаемых методом литья;

Сталь З0Г - углеродистая конструкционная качественная сталь с содержанием углерода 0,30%, спокойная, содержащая повышенное количество марганца.

 

Применение

Твердые сплавы в настоящее время являются распространенным инструментальным материалом, широко применяемым в инструментальной промышленности. За счет наличия в структуре тугоплавких карбидов твердосплавный инструмент обладает высокой твердостью HRA 80-92 (HRC 73-76), теплостойкостью (800—1000 °C), поэтому ими можно работать со скоростями, в несколько раз превышающими скорости резания для быстрорежущих сталей. Однако, в отличие от быстрорежущих сталей, твердые сплавы имеют пониженную прочность (σи = 1000—1500 МПа), не обладают ударной вязкостью. Твердые сплавы нетехнологичны: из-за большой твердости из них невозможно изготовить цельный фасонный инструмент, к тому же они ограниченно шлифуются — только алмазным инструментом, поэтому твердые сплавы применяют в виде пластин, которые либо механически закрепляются на державках инструмента, либо припаиваются к ним.

Твердые сплавы ввиду своей высокой твердости применяются в следующих областях:

§ Обработка резанием конструкционных материалов: резцы, фрезы, сверла, протяжки и прочий инструмент.

§ Оснащение измерительного инструмента: оснащение точных поверхностей микрометрического оборудования и опор весов.

§ Клеймение: оснащение рабочей части клейм.

§ Волочение: оснащение рабочей части волок.

§ Штамповка: оснащение штампов и матриц(вырубных, выдавливания и проч.).

§ Прокатка: твердосплавные валки (выполняются в виде колец из твердого сплава, одеваемых на металлическое основание)

§ Горнодобывающее оборудование: напайка спеченных и наплавка литых твердых сплавов.

§ Производство износостойких подшипников: шарики, ролики, обоймы и напыление на сталь.

§ Рудообрабатывающее оборудование: оснащение рабочих поверхностей.

§ Газотермическое напыление износостойких покрытий

 


 

15. Жаропрочные сплавы — металлические материалы, обладающие высоким сопротивлением пластической деформации и разрушению при действии высоких температур и окислительных сред. Начало систематических исследований жаропрочных сплавов приходится на конец 1930-х годов — период нового этапа в развитии авиации, связанного с появлением реактивной авиации и газотурбинных двигателей (ГТД).

Жаропрочные сплавы могут быть на алюминиевой, титановой, железной, медной, кобальтовой и никелевой основах. Наиболее широкое применение в авиационных двигателях получили никелевые жаропрочные сплавы, из которых изготавливают рабочие и сопловые лопатки, диски ротора турбины, детали камеры сгорания и т. п. В зависимости от технологии изготовления никелевые жаропрочные сплавы могут быть литейными, деформируемыми и порошковыми. Наиболее жаропрочными являются литейные сложнолегированные сплавы на никелевой основе, способные работать до температур 1050—1100 °C в течение сотен и тысяч часов при высоких статических и динамических нагрузках.