При плотной укладке в упаковках
Порядок диам. | Тип упаковки | ||||||||||||||||||||||
Кубическая | Тетрагональ. | Объемноцен. | Тригональн. | Гексагональ. | Случайная | ||||||||||||||||||
52,36 | 60,46 | 68,02 | 69,61 | 75,05 | 64,02* | ||||||||||||||||||
Отн. диам | Кон- цент | Отн. диам | Кон- цент | Отн. диам | Кон- цент | Отн- диам | Кон- цент | Отн. диам | Кон- цент | Отн. диам | Кон- цент | ||||||||||||
d1 | 1,00 | 52,4 | 1,00 | 60,5 | 1,00 | 68,0 | 1,00 | 69,8 | 1,00 | 74,1 | 1,00 | 64,0 64,0 | |||||||||||
d2 | 0,73 | 20,5 | 0,53 | 18,0 | 0,29 | 10,1 | 0,33 | 6,02 | 0,41 | 5,25 | 0,39 | 22,8 2,78 | |||||||||||
d3 | 0,27 | 3,03 | 0,21 | 6,42 | 0,26 | 3,12 | 0,29 | 6,84 | 0,23 | 1,69 | 0,15 | 27,1 4,15 | |||||||||||
d4 | 0,16 | 7,00 | 0,19 | 1,54 | 0,16 | 0,76 | 0,23 | 1,59 | 0,18 | 3,20 | 0,07 | 29,0 6,22 | |||||||||||
d5 | 0,12 | 1,91 | 0,12 | 2,50 | 0,12 | 2,07 | 0,12 | 1,04 | 0,12 | 2,20 | 0,02 | 27,7 5,70 | |||||||||||
d6 | 0,07 | 0,49 | 0,07 | 0,50 | 0,07 | 1,68 | 0,11 | 3,14 | 0,11 | 3,13 | 0,01 | 23,0 5,47 | |||||||||||
Итого: 85,33 89,42 85,76 87,44 90,52 88,30
* Случайная упаковка, остальные – регулярные (систематические) укладки.
Объемная доля шаров размером dn, помещающихся в образуемых пустотах:
Vn = mnh1(dn/d1)3; (1.6)
где mn – число пустот последовательно меньшего размера, приходя-щихся на одно зерно упаковки, подсчитывается обычным приемом, известным в кристаллохимии;
mn = Nn/p; (1.7)
где Nn – число зерен размером dn, помещающихся в соответствующих пустотах упаковки; p – число наибольших одинаковых шаров в контей-нере; h1 – коэффициент случайной упаковки частиц.
Коэффициент случайной упаковки частиц h1 определяют уплотне-нием навески зернистого материала утряской, вибрацией или центрифу-гированием в водном растворе суперпластификатора с разбавлением 3:1.
Результаты практических измерений дают среднюю величину коэф-фициента случайной упаковки частиц в контейнере h1=0,63716.
Практическое значение имеет закон распределения частиц в высоко-плотных составах зернистых материалов при заполнении ими пустот в образующихся случайных упаковках
dn/d1 =(2,549/10×h1)m(n-1)/3×Фn-1/Фn; (1.8)
где Фn-1/Фn - коэффициенты формы частиц очередного и последующего размеров; (для частиц сферической формы Фn = I, для несферической формы Фn ³1); m - степень распределения частиц; (m = 0-12).
При непрерывной гранулометрии получают составы с 0<m<3, при прерывистой – 3£m<6.
Анализ этого закона позволяет получить важные критериальные значения h1, поскольку дает распределение пустот в упаковке при различных допустимых размерах пустот между ними.
Коэффициент формы частиц зернистых материалов значительно влияет на точность результатов экспериментального определения плотности упаковки в искусственных каменных конгломератах, в особенности при наличии в них тонкодисперсных материалов. На практике форму частиц устанавливают под микроскопом и отождеств-ляют с формой различных правильных геометрических тел (табл. 1.2), коэффициент формы которых рассчитывается. В зависимости от состо-яния зернистого слоя в расчетах используют коэффициент формы частиц, определяемый отношением объема шарообразной частицы ма-териала, к поверхности данного шара, либо обратную ему величину – фактор формы. В составе композиций чаще принимают коэффициент формы. зернистого материала.
Таблица 1.2