Анализ и декомпозиция трендов
Целью анализа тренда является разложение временного ряда продаж на главные компоненты, измерение эволюции каждой составляющей в прошлом и ее экстраполяция на будущее. В основе метода лежит идея стабильности причинно-следственных связей и регулярность эволюции факторов среды, что делает возможным использование экстраполяции. Метод состоит в разложении временного ряда на пять компонент:
— структурная компонента, или долгосрочный тренд, обычно связанный с жизненным циклом рынка товара;
— циклическая компонента, соответствующая колебаниям относительно долгосрочного тренда под воздействием среднесрочных флуктуаций экономической активности;
— сезонная компонента, или краткосрочные периодические флуктуации, обусловленные различными причинами (климат, социально-психологические факторы, структура нерабочих дней и т.д.);
— маркетинговая компонента, связанная с действиями по продвижению товара, временными снижениями цен и т.п.;
— случайная компонента, отражающая совокупное действие плохо изученных комплексных процессов, не представимых в количественной форме.
Для каждой компоненты рассчитывается параметр, основанный на наблюдавшихся закономерностях: долгосрочном темпе прироста продаж, конъюнктурных флуктуациях, сезонных коэффициентах, специфичных факторах (экспозиции, мероприятия по стимулированию сбыта и т.п.). Затем эти параметры используют для составления прогноза.
Понятно, что такой прогноз имеет смысл только как краткосрочный, на период, в отношении которого можно принять, что характеристики изучаемого явления существенно не изменяются. Это требование часто оказывается реалистичным вследствие инерционности среды.
Метод экспоненциального сглаживания
Используется для краткосрочного прогноза и основан на средневзвешенном значении продаж по определенному числу прошедших периодов. При этом наибольшие весовые коэффициенты придаются позднейшим продажам. Прогнозное значение рассчитывается по формуле
Константа сглаживания выбирается аналитиком итеративным способом в интервале от 0 до 1. Ее значение мало при малых изменениях продаж и приближается к 1 в случае сильных флуктуаций. Существуют компьютерные программы для определения этой константы.
Таблица 7.4. Квартальные продажи с коррекцией влияния сезонности (пример).
Кварталы | Сезонный индекс | ||||||
0, 908 | |||||||
0, 996 | |||||||
1, 153 | |||||||
0, 943 |
В качестве примера рассмотрим данные в табл. 7.4. Проведена сезонная коррекция данных, чтобы найти оптимальное значение константы сглаживания. С целью проверки предсказательной силы модели привлечены данные за 1992 г. Чтобы предсказать продажи в первом квартале 1992 г., нужно располагать сглаженными оценками продаж за предыдущие периоды. Например, сглаженная оценка за первый квартал 1988 г.
Здесь в качестве сглаженной оценки за предыдущий период взяты данные после сезонной коррекции за 1987 г. (105), поскольку сглаженные данные за этот период не могут быть рассчитаны. Аналогичным
Таким образом, имеем следующий прогноз на первый квартал 1992 г.:
Обратите внимание, что прогноз всегда лежит в интервале между текущим объемом продаж и сглаженной оценкой за текущий период. Погрешность прогноза может быть рассчитана, как
Это очень большая погрешность, что может быть объяснено малым значением константы а в условиях быстрого роста продаж. Если выбрать для а значение 0, 80, то сглаженные продажи в 1991 г. составят 128, 6, а ошибка прогноза не превысит 1, 1%, что значительно лучше.
Существуют и более мощные методы сглаживания, использующие несколько констант сглаживания. Их обзор дан в книге (Makridakis and Wheelwright, 1973).
Главная слабость этих методов в том, что они не позволяют действительно « предсказать» эволюцию спроса, поскольку неспособны предвидеть какие-либо «поворотные точки». В лучшем случае они способны быстро учесть уже произошедшее изменение. Поэтому их называют «адаптивной прогнозной моделью». Тем не менее для многих проблем управления такой « апостериорный» прогноз оказывается полезным при условии, что имеется достаточно времени для адаптации и факторы, определяющие уровень продаж, не подвержены резким изменениям.
7.4.4. Экспликативные (« объясняющие») модели
С научной точки зрения, « объективные» и « аналитические» методы являются самыми мощными. Они основываются на создании экспликативных математических моделей, которые позволяют имитировать рыночные ситуации в рамках альтернативных сценариев. В своей концептуальной основе математическое моделирование очень близко описанным ранее экспертным методам: требуется установить причинную структуру, разработать один или множество сценариев и для каждого отобранного сценария вывести оценку вероятного спроса. Отличие метода заключается в том, что причинная структура устанавливается и проверяется экспериментально, в условиях, поддающихся объективному наблюдению и измерению.