Вариации произвольных постоянных

Для нахождения общего решения y’’ + (x) y’ + (x) y = f (x) необходимо найти частное решение .

Его можно найти из общего решения уравнения y’’ + (x) y’ + (x) y = 0 некоторых вариаций произвольных постоянных

= + (5.6)

= + + +

= + + +

Подставим в (5.1)

+ + + + (x) + +

(x) + = f (x)

+ + + + (x) +

(x) + = f (x)

= W (x) 0

= (x)

= (x)

Интегрированием найдем и

Затем по формуле (5.6) составим общее решение

Теорема (5.2) : о наложение решения

Если правая часть уравнения y’’ + (x) y’ + (x) y = f (x) представляет собой сумму 2-ух функций:

f(x) = (x) + (x) ,

а u - частное решение уравнения

+ (x) y ‘ + (x) y = (x)

+ (x) y ‘ + (x) y = (x)

То функция

Является решение данного уравнения

( ) ‘’ + ) ‘ + ) ‘= ‘’ + + + ( ) ‘’ + ) ‘ + = (x) + (x) = f(x)

 

 

10. Уравнение Бернулли.

11. Уравнение Риккати.:

Уравнение Риккати является одним из наиболее интересных нелинейных дифференциальных уравнений первого порядка. Оно записывается в форме:

где a(x), b(x), c(x) − непрерывные функции, зависящие от переменной x.

Уравнение Риккати встречается в различных областях математики (например, в алгебраической геометрии и в теории конформных отображений) и физики. Оно также нередко возникает в прикладных математических задачах.

Приведенное выше уравнение называется общим уравнением Риккати. Его решение основано на следующей теореме:

Теорема: Если известно частное решение y1 уравнения Риккати, то его общее решение определяется формулой

Действительно, подставляя решение y = y1 + u в уравнение Риккати, имеем:

Подчеркнутые члены в левой и правой части можно сократить, поскольку y1 − частное решение, удовлетворяющее уравнению. В результате мы получаем дифференциальное уравнение для функции u(x):

Второй вариант риккати(писать только один из)

В общем случае не интегрированно в квадратурах

Однако если известно одно частное решение , то уравнение Риккати можно свести к уравнению Бернулли

Для этого положим сделаем замену:

y =

+ p(x) + p (x) z + q (x) * + q (x) * 2 z + q (x) = f (x)

+ p(x) z + 2q (x) z +q(x) = 0

+z (p (x) + 2q (x) ) + q (x) =0

n=2 Бернули

12. Уравнение Лагранжа.:

13. Уравнение Клеро.:

14. Дифференциальные уравнения порядка выше первого. Случаи понижения порядка.

15. Линейные дифференциальные уравнения n го порядка. Вронскиан. Фундаментальная система решений.:

 

 

16. Однородные дифференциальные уравнения с постоянными коэффициентами. Характеристическое уравнение:

 

Частным случаем рассмотренных выше линейных однородных

дифференциальных уравнений являются ЛОДУ с постоянными

коэффициентами.

 

 

 

 

 

17. Линейные неоднородные уравнения. Отыскание частного решения в случае уравнения с квазиполиномом:

 

Квазиполином Эйлера: Рассмотрим ЛНДУ 2-го порядка с постоянными коэффициентами : y’’ + p y’ + q y = f(x) (5.7) Можно искать частное решение методом Лагранжа, однако в некоторых случаях можно найти проще Рассмотрим эти случаи :1. f(x) = , -многочлен степени n. 2.f(x) = ( cos β x + (x) sin β x). В этих случаях f(x) называют квазиполиномом ЭЙЛЕРА. В этих случаях записывают ожидаемую форму решения с неопределенными коэффициентами и подставляют в ур-е (5.1). Из полученного тождества находят значение коэффициентов. Случай 1 : правая часть (5.7) имеет вид :f(x) = α R -многочлен степени n. Ур-е (5,7) запишется в виде: y’’ + p y’ + q y = (5.8) В этом случае частное реш-е ищем в виде: = Qn (x) (5.9) где r – число = кратности α как корня характеристического ур-я + p k + q = 0,т.е. r – число,показывающее сколько раз α явл-я корнем ур-я + p k + q = 0, При этом Qn (x) = + + …. + An –многочлен степени n, записанный с неопределёнными коэффициентами Ai (i= 0, 1, 2,…n) А) Пусть α не является корнем характеристического ур-я : + p k + q = 0,т.е. α , r = 0 и решение ищем в виде = Q n (x) Б) Пусть α является однократным(простым) корнем характеристического ур-я + p k + q = 0, α = r = 1, = x Q n (x) В) Пусть α = является 2-хкратным корнем характеристического ур-я + p k + q = 0 , r = 2 = Q n (x) Случай 2 : Правая часть (5.7) имеет вид :f(x) = ( ) cosβx + Q m (x) sin β (x ) ,Где )и Qm (x) многочлены степени n и m соответственно, α и β - действительного числа, тогда ур-е (5.7) запишется в виде y’’ + py’ + qy = ( ) cosβx + Qm (x) sinxβ ) (5.10) В это случае частное решение: = * (Ml (x) cosβx + N l (x) sin βx ) (5.11) r-число равное кратности (α + βi) как корня уравнения : + pk + q = 0, Me (x) и Ne (x)-многочлены степени l с неопределёнными коэффициентами. l –наивысшая степень многочленов )и Qm (x), l =max( n,m). Замечание 1 :После подстановки функции (5.11) в (5.10) приравнивают многочлены, стоящие перед одноименными тригоном. функциями в левой и правой частях ур-я. Замечание 2 : Формула (5.11) сохраняется и при ) 0 и Qm (x) 0. Замечание 3 : Если правая часть ур-я (5.7) есть сумма функций вида 1 и 2 , то для нахождения следует использовать теорему (5.2) о наложении решений. Теорема (5.2) : о наложении решений: Если правые части ур-я (5.1) представляют собой сумму 2-х функций:f(x) = (x) + (x) ,а u - частные решения ур-я + (x) y ‘ + (x) y = (x) + (x) y ‘ + (x) y = (x)То является решение данного ур-я. Интегрирование ЛНДУ п-го порядка (n постоянным коэффициентом и правой частью специального вида. Рассмотрим ЛНДУ n-го порядка + (x) + (x) + … + (x)y = f(x) где (x) , …, (x) , f(x) заданы непрерывной функцией на интервале (а, b) . Соотв. однородное ур-е + (x) + … + (x)y = 0. Общее решение y ЛНДУ n-го порядка = сумме частного решения НУ и общего решения ОУy= . может быть найдено если известно общее решение ОУ = + + … + гдеyi(x) – частное реш-е образующее фундаментальную систему решений ОУ.Для нахождения Сi(x)составляется система ур-й + + … + = 0 + + … + = 0 + + … + = 0 + + … + = f (x)Однако для ЛНДУ n-го порядка с постоянными коэффициентами, правая часть f(x) которого имеет специальный вид, можно найти методом неопределенных коэф-в.Метод подбора частного решения для уравнения y’’ + + … + y = f (x) R,где f (x) квазиполином Эйлера тот же что и при n=2.

 


 

18. Линейные неоднородные уравнения. Отыскание частного решения методом вариации произвольных постоянных.:

 

 

 


 

19. Системы дифференциальных уравнений. Запись задачи в матричной форме:

 

 

 


 

20. Сведение систем дифференциальных уравнений к одному уравнению более высокого порядка.: