Лазерные светоиспускающие диоды

В таких диодах необходимо создать инверсную заселённость (много электронов в возбуждённом состоянии и мало в основном). Для этого в качестве материалов р-п-перехода используют вырожденные полупроводники, в которых обеспечивается очень высокая концентрация основных носителей. В таких полупроводниках можно обеспечивать условие инверсной заселённости (много электронов (N2el) в возбуждённом состоянии и мало в основном состоянии (N1el)) в области р-п-перехода.

В качестве зеркал лазерного резонатора используют отполированные торцы самого полупроводникового кристалла. Одно из них делают частично прозрачным (нижнее на рисунке) для выхода излучения из резонатора.

Лазерные диоды – миниатюрны, экономичны, обеспечивают достаточно сильный световой поток. Их используют в оптических устройствах записи и чтения информации, лазерных принтерах, системах передачи информации по световолоконным кабелям и т.д.

 

Источники тока на р-п-переходе

Полупроводниковые солнечные элементы.

Поглощённый в области р-п-перехода квант электромагнитного излучения создаёт пару электрон-дырка. Электрическое поле перемещает электрон в п-область, а дырку в р-область.

При постоянном облучении р-п-перехода потоком фотонов в р-области накапливаются дырки, а в п-области накапливаются электроны и в цепи через нагрузку начинает течь ток.

Технически полупроводниковые солнечные элементы обычно получают в виде пластины полупроводника р-типа, на которую нанесён тонкий прозрачный слой металла, который можно считать аналогом полупроводника п-типа. Затем на слой металла наносят прозрачное защитное покрытие. Один элемент обычно обеспечивает напряжение порядка долей вольта и ток в несколько миллиампер. Для обеспечения необходимой мощности элементы соединяют последовательно и параллельно в батарею большой площади.

 

Полупроводниковые тепловые элементы.

 

Принцип работы полупроводниковых тепловых элементов аналогичен работе полупроводниковых солнечных элементов с тем отличием, что в области р-п-перехода пары электрон- дырка образуются за счёт его нагрева.

Рекомбинация пар электрон-дырка сопровождаются выделением теплоты, поэтому требуется теплоотвод к радиатору или теплообменнику.

 

Подобную схему можно использовать в работе полупроводниковых охладителей – устройств, при пропускании тока через которые происходит охлаждение одной стороны устройства и нагрев другой.