Основы функциональной организации двигательных систем мозга

Особое место в функциональной организации мозга занимает двигательный анализатор (по терминологии И.П. Павлова) или интегративно-пусковые системы. Это связано с тем, что двигательные области коры стоят на выходе интегрирующей и координирующей деятельности мозга и выполняют функцию запуска и контроля двигательной деятельности, реализации поведенческих актов. Восприятие, адекватное воздействие, надежное распознавание и высокая способность к дифференцировке раздражителей являются необходимой предпосылкой для деятельности двигательных систем интегративно-пусковых аппаратов. Для двигательных областей коры характерен прежде всего синтез возбуждений различной модальности с биологически значимыми сигналами и мотивационными влияниями. Им свойственна дальнейшая, окончательная трансформация афферентных влияний в качественно новую форму деятельности, направленную на быстрейший выход эфферентных возбуждений на периферию, т. е. на аппараты реализации конечной стадии поведения. В отношении сознательной деятельности человека А.Р. Лурия [23] назвал деятельность системы интегративно-пусковых аппаратов третьим функциональным блоком программирования, регуляции и контроля деятельности.

Высшие аппараты третьего функционального блока мозга расположены в передних отделах больших полушарий — кпереди от центральной извилины (см. рис. 4). Его основной отличительной чертой является то, что' он не содержит модально-специфических зон, представляющих отдельные анализаторы, а состоит целиком из аппаратов эфферентного (двигательного) типа, однако сам находится под постоянным притоком информации из аппаратов афферентного (сенсорного) блока. Далее важнейшая черта, отличающая работу третьего функционального блока от афферентного, состоит в том, что процессы здесь идут в нисходящем направлении, начинаясь с наиболее высоких — третичных и вторичных зон коры. Здесь в высших отделах интегративно-пускового блока формируются двигательные программы, а затем переходят к аппаратам низших моторных образований (первичным корковым зонам; стволовым и спинальным двигательным ядрам). Решающее значение в подготовке двигательной эфферентной импульсации имеют надстроенные над первичной моторной корой вторичные (премоторные отделы, 6-е и 8-е поля) и третичные зоны (префронтальные отделы лобной коры), или лобные доли (см. рис. 4).

Двигательная кора (первичная проекционная зона) занимает пространство ростральнее Роландовой борозды (4-е поле Бродмана). Она является выходными воротами интегративно-пусковой системы мозга, или функционального блока программирования, регуляции и контроля деятельности. Передняя центральная извилина является лишь первичной (проекционной) зоной, исполнительным аппаратом (выходными воротами) мозговой коры. Естественно, что состав двигательных импульсов, посылаемых на периферию, должен быть подготовлен, включен в определенные программы, и только после такой подготовки двигательная импульсная программа может обеспечить нужные целесообразные движения. Эта программа формируется как в аппарате передней центральной извилины, так и в аппаратах, надстроенных над ней.

 

Особенностью цитоархитектонической организации моторной коры является мощное развитие 5-го эфферентного слоя, который содержит гигантские пирамидные клетки Беца. Известно еще из классических работ Лоренто де Но, опубликованных в 1943 г., что пирамидные нейроны расположены неравномерно, группами с вертикальными связями между нейронами II и IV слоев. Подтверждение группирования нейронов коры в радиально ориентированные колонки было получено в электрофизиологических исследованиях В. Маунткасла [45]. Позднее в ряде исследований было установлено, что вертикально ориентированные колонки являются элементарными функциональными ячейками двигательной коры. Каждая вертикальная колонка — структурный модуль — это группа клеток, в которой гигантская пирамида занимает центральное положение, а вокруг нее — 2-3 крупные или средние пирамидные клетки, дендриты которых идут плотным пучком. Между такими клеточными ансамблями (микроколонками) наблюдается взаимное проникновение дендритов, что облегчает синаптические контакты набора микроколонок с одним и тем же афферентным волокном, и, таким образом, с одного афферентного волокна может включиться в реакцию целая система микроколонок.

Аксоны гигантских пирамид дают начало длинным нисходящим волокнам, составляющим значительную часть «главного» двигательного пути мозга — пирамидного тракта, оканчивающегося на моторных ядрах головного и спинного мозга, т. е. образуют кортикоспинальные пути. Развитие кортикоспинальной системы является эволюционно наиболее поздним по сравнению с экстрапирамидной системой, и ее развитие связано с необходимостью обеспечения непосредственного контроля над мотонейронами со стороны моторной коры. Пирамидная система тесно связана с экстрапирамидной системой. К последней относятся все образования головного мозга, имеющие отношение к управлению движениями и посылающие супраспинальные проекции вне кортикоспинальных путей.

Функциональная организация моторной коры имеет проекционный и топографический характер с четко выраженными признаками соматотопической проекции: в медиальных отделах поверхности коры берут начало волокна, управляющие мускулатурой нижних конечностей, нервные клетки срединных отделов поверхности коры посылают аксоны к спинальным механизмам верхних конечностей, от латеральных отделов нисходящие эфферентные волокна направляются к двигательным ядрам черепно-мозговых нервов ствола мозга и управляют мышцами гортани, рта, глаз и лица. По ходу следования все нисходящие волокна перекрещиваются и управляют мускулатурой противоположной стороны туловища. Органы, которые нуждаются в наиболее тонкой регуляции и выполняют дискретные движения, имеют в моторной зоне коры максимальное топическое представительство.

С помощью метода локальной электрической стимуляции было установлено точное представительство мышц тела и конечностей в коре человека и животных. Локальная стимуляция коры вызывает рефлексию отдельных мышц противоположной стороны тела. Дискретные движения с наименьшим порогом вызываются стимуляцией моторной коры (4-е поле). Эти движения обусловливаются активацией гигантских пирамидных клеток, которые отсутствуют в постцентральной области коры. Все это говорит о том, что моторная зона является лишь проекционной зоной, исполнительным аппаратом мозговой коры и она не может функционировать «самостоятельно». Решающее значение в подготовке двигательных программ для передачи их на гигантские пирамидные клетки имеют надстроенные над ней вторичные и третичные зоны коры.

 

Вторичные зоны двигательной коры или премоторные отделы лобной области морфологически сохраняют тот же принцип «вертикальной организации», который характерен для всякой двигательной коры, но отличается несравнимо большим развитием верхних клеточных слоев коры — малых пирамид. Премоторная кора подчиняется принципу убывающей специфичности, в ней отсутствует локальная соматотопическая проекция, а аксоны пирамидных клеток этой области образуют эфференты, переключающиеся на обширные подкорковые моторные образования. Раздражение 5-, 7- и 8-го полей премоторной области коры (см. рис. 4) вызывает не соматотопически ограниченные (локальные) вздрагивания отдельных мышц, а целые комплексы движений, имеющих системно организованный характер (баллистические движения глаз в определенную точку пространства, медленные прослеживающие движения глаз, поворот головы, туловища, направленные движения конечностей). Это указывает на то, что «командные» нейроны премоторной коры «организуют» отдельные мышечные сокращения в целостный двигательный акт.

Известно, например, что электрическим раздражением отдельных участков париетальной коры (ассоциативная, теменная область) мозга кошки также можно вызвать быстрые саккады (баллистические движения) и медленные следящие движения глаз. При поражении этих областей коры собственно движения глаз на зрительные стимулы сохраняются, но запуск произвольных движений (саккад) исчезает. Это говорит о том, что указанная область коры является не обычным моторным центром, а включена в систему запуска, контроля и управления двигательной реакцией. Так, в париетальной коре (8-е поле) кошки локализованы нейроны, которые возбуждаются только тогда, когда одновременно с появлением стимула к ним поступает возбуждение (модуляция) от системы неспецифической активации мозга, связанное с актами внимания к этому стимулу. Эти нейроны образуют механизм актуализации стимулов, ставших объектом внимания. Кроме того, в париетальной коре выделены две группы клеток. В одной группе нейронов разряд связан с быстрыми движениями, а во время медленных фаз движений ответ подавляется.

Другая группа нейронов разряжается во время медленных следящих движений и фиксации взора. Предполагается, что эти нейроны составляют два канала управления быстрыми и медленными движениями глаз, они могут являться «следящей системой», работающей по механизму внутренней обратной связи, назначение которой связано с коррекцией последовательностей движений.

Премоторные отделы коры представляют мощный аппарат мулътисенсорной конвергенции. Эти ассоциативные зоны снабжены богатой и разветвленной системой эфферентных путей как к корковым формациям рострального полюса больших полушарий, так и к подкорковым образованиям — специфическим, неспецифическим, ассоциативным ядрам таламуса, гипоталамуса, миндалине, ядрам экстрапирамидной системы, помимо этого они образуют связи со спинным мозгом через пирамидный тракт.

Наиболее важной частью третьего функционального блока мозга являются третичные зоны коры, которые занимают префронтальные или лобные отделы (см. рис. 4). Лобные отделы, по мнению А.Р. Лурии, представляют собой блок программирования намерений, оценки выполненных действий и коррекции допущенных ошибок, т.е. аппарат наиболее сложных форм регуляции целостного поведения.

В филогенезе эти отделы мозга получают мощное развитие лишь на самых поздних этапах эволюции. В.М. Бехтерев прямо указывал, что в восходящем ряду животных развитие лобных долей идет параллельно развитию интеллектуальных способностей. Действительно, обнаруживается четкий параллелизм между развитием ассоциативных ядер таламуса и ассоциативными зонами фронтальной и теменной коры, при этом степень развития ассоциативных полей коры млекопитающих является показателем уровня филогенетического статуса вида и уровня его адаптивных возможностей (Байкот, Byлси, Кэмпбел и др.). Можно также отметить, что отношение площади ассоциативных полей к общей поверхности коры существенно возрастает, а площадь проекционных полей соответственно сокращается.

Особенностью префронтальной области (ассоциативных полей) мозга является ее богатейшая система связей как с нижележащими подкорковыми образованиями мозга и соответствующими отделами ретикулярной формации, так и со всеми остальными отделами коры. Эти связи носят двусторонний, а нередко моносинаптический характер и делают префронтальные отделы коры образованиями, находящимися в самом выгодном положении как для приема и синтеза сложнейшей системы афферентаций, идущих от всех отделов мозга, так и для организации эфферентных импульсов, позволяющих оказывать регулирующие воздействия на все эти структуры. Недавно группа итальянских ученых, исследуя активность нейронов (в нижнем отделе 6-го поля) коры обезьян в свободном поведении, обнаружила (в ростральной части этого отдела) новый класс «командных» нейронов. Эти нейроны разряжались в связи с двигательным актом, имеющим определенную цель. Однако способ реализации двигательного акта, т. е. каким эффектором животное достигает цели, для этих нейронов не имеет значения. Исследователи предположили, что описанные нейроны ответственны за абстрактные команды целенаправленного действия.

Лобные доли коры целиком состоят из мелких, зернистых клеток, обладающих в основном короткими аксонами и разветвленными дендритами и таким образом несущих ассоциативные функции. Получая по восходящим пучкам связей от ретикулярной формации активирующие воздействия, они сами оказывают регулирующее влияние на нее. Они придают деятельности неспецифической активирующей системы дифференцированный характер, приводя состояние активности в соответствие с различными формами поведения. Как более поздняя онтогенетическая «надстройка», лобные доли осуществляют гораздо более универсальную функцию общей организации поведения и высших форм ассоциативной деятельности. Они становятся окончательно подготовленными к деятельности у ребенка лишь 4-7-летнего возраста, когда ассоциативные пути обеспечивают нарастающее в онтогенезе совершенствование механизмов сочетательной (условнорефлекторной) деятельности головного мозга, когда верхний продольный пучок нервных волокон устанавливает связь между новыми полями лобной, теменной, затылочной и височной областей коры. Созревание ассоциативных систем мозга отражается в постепенной нормализации различных физиологических показателей организма, динамических свойств нервных процессов, а также готовности к повышенной функциональной нагрузке ассоциативных систем.

Дальнейшие исследования позволили внести уточнения в анализ функций лобных долей мозга. Наиболее заметные изменения в поведении наступают после лобэктомии у антропоидов. Обезьяна, лишенная лобных долей, успешно осуществляет простые акты поведения, но не в состоянии дифференцировать сигналы, использующиеся в разных ситуациях (например, при последовательной смене стимулов), и, таким образом, не может выполнять программу поведения, требующую хранения следа раздражителя в памяти. Иными словами, нарушается выполнение различного рода отсроченных задач. Однако, по мнению К. Прибрама [31], разрушение лобных долей у шимпанзе ведет не столько к нарушению памяти, сколько к нарушению поведения в результате потери способности решения задач в связи с возникновением устойчивого ориентировочного рефлекса (неугасающей реакцией на всевозможные побочные раздражители). При этом животное не способно к состоянию «активного ожидания» и в условиях длительной паузы делает массу движений, не относя их к моменту ожидаемого раздражителя. Таким, образом, есть основания считать, что лобные доли являются одним из важнейших аппаратов, позволяющих животному осуществлять ориентировку не только на настоящий момент, но и на . будущее.

Нейропсихологические данные (полученные в условиях клиники) позволили выделить ряд симптомов, связанных с локальными поражениями участков лобной коры, и уточнить, таким образом, специфику их участия. Повреждение премоторной области лобного отдела мозга приводит к нарушению контроля над двигательной сферой деятельности человека. Особенно тяжелые последствия наступают при поражении левого полушария, связанного с речевой функцией, в связи с этим страдает выполнение действий, вызванных словесными инструкциями, меняется уровень интеллектуальной деятельности. При повреждениях, захватывающих базальные (орбитальные) отделы любой области, которые тесно связаны с лимбическими образованиями мозга, наблюдаются симптомы, связанные непосредственно с высшим контролем внутренней мотивационной сферы организма.

Функціональна асиметрія великих півкуль. Відмінності між функціонуванням правої та лівої півкулі. Генетичні та біохімічні чинники розвитку асиметрії великих півкуль.

 

2.2. Учення П.К.Анохіна про функціональну систему. Поняття функціональна система. Універсальні механізми ФС. Постулати теорії ФС.