Среднее ускорение при неравномерном движении

.

Принцип относительности Галилея (в классической механике) – никакие опыты, проводимые в инерциальных системах отсчета с механическими приборами, не позволяют установить, покоится система отсчета или движется равномерно и прямолинейно по отношению к другой инерциальной системе отсчета. Предполагается, что время не зависит от относительного движения систем отсчета.

Преобразования Галилея определяют положение произвольной материальной точки в двух инерциальных системах отсчета, одна из которых движется со скоростью vo относительно другой (при условии, если направление скорости v0 совпадает с направлением ro):

r = r' + r0 = r' + vot; t = t',

где rи r' – радиус-векторы, определяющие положение материальной точки в неподвижной и подвижной системе отсчета в данный момент времени;

ro – радиус вектор, определяющий положение начала координат системы К' (подвижной) в системе К (неподвижной).

В проекциях на оси координат в произвольный момент времени t положение выбранной точки в системе К можно определить так:

x = x' + v0xt, x' = x – v0xt,

у = у' + vt, у' = у – vt,

z = z' + v0zt, z' = z – v0zt,

t = t'. t = t'.

Ковариантные или инвариантные уравнения – уравнения, обе части которых при переходе от одной системы координат к другой преобразуются одинаково и сохраняют свой вид во всех инерциальных системах отсчета.

Закон сложения скоростей в классической механике:

v= v' + v0.

Относительное расстояние между выбранными точками пространства в системах отсчета определяется соотношением – они абсолютны, т.е. инвариантны:

1) в подвижной:

;

2) в неподвижной:

.

Инварианты преобразований – инвариантные величины (расстояния между телами (точками), промежутки времени между событиями, относительные скорости тел, ускорения).

Вращательное движение твердого тела вокруг неподвижной оси –движение, при котором какие-либо две его точки остаются неподвижнымив процессе движения. Прямая, проходящая через эти точки, – ось вращения; все остальные точки твердого тела описывают окружности в плоскостях, перпендикулярных к оси вращения, центры которых лежат на этой оси (рис. П1.3).

Основные кинематические характеристики вращательного движения (рис. П1.4):

1) угол поворотаDj – угол, отсчитанный между двумя последовательными положениями радиуса R;

2) угловая скорость w – векторная физическая величина, показывающая, как изменяется угол поворота Dj в единицу времени, численно равная первой производной от угла поворота по времени. Вектор угловой скорости направлен вдоль оси вращения в сторону, определяемую правилом правого винта:

.

3) угловое ускорение e – векторная физическая величина, характеризующая изменение угловой скорости в единицу времени, численно равная первой производной от угловой скорости по времени или второй производной от угла поворота по времени Направление вектора углового ускорения совпадает с направлением вектора угловой скорости в случае ускоренного вращения и противоположно – в случае замедленного:

Период вращения (T) – время, в течение которого тело совершает один полный оборот.

Частота вращения (n) – число оборотов, совершаемых в единицу времени.

Круговая (циклическая) частота ω – число оборотов, совершаемых за время, равное 2π.

Связь между периодом, частотой и круговой частотой:

ω = 2π n = 2π / T; n = 1 / T.

Связь между линейными и угловыми скоростями и ускорениями

Колебательные движения (колебания) – движения или процессы, обладающие повторяемостью во времени.

Гармонические колебания (простейший вид колебаний) – движения, при которых смещение материальной точки (тела) от положения равновесия изменяется по закону синуса или косинуса (рис. П1.5):

x = x0×sin (w0t + j0),

где x – смещение это удаление материальной точки от положения равновесия в данный момент времени t;

x0 – амплитуда колебаний это максимальное удаление материальной точки от положения равновесия;

(wt + j0) – фаза колебаний. Периодически изменяющийся аргумент функции, описывающей колебательный или волновой процесс. Определяет положение материальной точки в данный момент времени t;

j0 – начальная фаза колебаний. Определяет положение материальной точки в начальный момент времени t = 0;

w = 2p / T = 2p n – круговая (циклическая) частота колебаний;

T – период колебаний;

n – частота колебаний.

Скорость при гармоническом колебательном движении(колебательная скорость) – физическая величина, которая показывает, как изменяется смещение в единицу времени, численно равная первой производной от смещения по времени:

.

Ускорение при гармоническом колебании – физическая величина, которая показывает, как изменяется скорость в единицу времени, численно равная первой производной от скорости или второй производной от смещения по времени:

.

Знак «минус» означает, что ускорение направлено в сторону, противоположную смещению.

Сложение гармонических колебаний одного направления (рис. П1.6) с одинаковыми амплитудами и частотами (x01 = x02; w1 = w2 = = w), но разными начальными фазами (j02 ¹ j01) проводят аналитически. Уравнение результирующего колебания имеет вид

где – амплитуда результирующего колебания;

– фаза результирующего колебания.

Биениявозникают при сложение колебаний одного направления (рис. П1.7), с одинаковыми амплитудами (x02 = x01), начальными фазами j01 = j02 = 0 и круговыми частотами, мало отличающимися друг от друга (w1 » w2). Уравнения таких колебаний имеют вид

x1 = x01×sin w1t; x2 = x01×sin w2t.

Уравнение результирующего колебания:

,

где – амплитуда результирующего колебания, которая зависит от Dw = w1 – w2 – разности частот складываемых колебаний;

– смещение результирующего колебания, изменяющееся по гармоническому закону.

Частота и период результирующего колебания:

Частота и период изменения амплитуды в этом случае:

Сложение взаимно перпендикулярных колебаний приводит к тому, что траектория движения представляет собой замкнутые фигуры, называемые фигурами Лиссажу (рис. П1.8):

1) сложение колебаний с одинаковыми частотами (w1 =w2 =w), различными амплитудами (x0 ¹ y0) с начальными фазами j1 = j2 = 0 – результирующее колебание – гармоническое. Траектория движения – прямая линия, уравнение которой имеет вид

y = (y0/x0)×x.

2) сложение колебаний, начальные фазы j1 и j2 которых отличаются на p/2 (j1 – j2 = p/2) – результирующее колебание – гармоническое. Траектория движения – эллипс (при равных амплитудах x0 = y0 – траектория результирующего движения – окружность) с полуосями, равными x0 и y0, уравнение которого

(y/y0)2 + (x/x0)2 = 1;

3) сложение колебаний, периоды которых относятся как целые числа – через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка возвращается в начальное положение – получаются фигуры Лиссажу более сложной формы.

Динамика изучает движение и взаимодействия тел совместно с причинами, обусловливающими тот или иной характер движения и взаимодействия.

Основная задача динамики – для данного тела по известной силе найти его ускорение и, наоборот, по известному ускорению найти результирующую силу, действующую на тело.

Массаm – физическая величина, характеризующая количество вещества, инертность, гравитационные свойства и энергию материального тела. Массу тела, определяющую его инертные свойства, называют инертной массой.

Центр масс (или центр инерции) системы – воображаемая точка С, положение которой характеризует распределение массы этой системы и определяется радиус-вектором:

,

где mi и ri – соответственно масса и радиус-вектор i-й материальной точки;

n – число материальных точек в системе.

Скорость центра масс

,

где – полный импульс системы.

Импульс p (количество движения) – физическая величина, описывающая свойства движущихся тел, равная произведению массы на скорость:

p =mv.

Полный импульс системы равен произведению массы системы на скорость ее центра масс:

p =mvc.

Покой – частный случай равномерного прямолинейного движения со скоростью v = 0.

Инерция – свойство тел сохранять состояние покоя или равномерного прямолинейного движения.

Инерциальные системы отсчета– системы отсчета, в которых выполняются первый и второй законы Ньютона (их уравнения и все следствия).

Неинерциальная система отсчета– система отсчета, движущаяся по отношению к инерциальной системе отсчета с ускорением.

Первый закон Ньютона: «Всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока равнодействующая всех приложенных сил равна нулю».

Сила F – векторная физическая величина, характеризующая воздействие одних тел на другие. В результате действия силы изменяется состояние движения тела (тело приобретает ускорение) или тело деформируется.

Сила F в механике – мера механического действия на данное материальное тело (данную материальную точку) других тел (других материальных точек) или полей.

Закон независимости действия сил: при действии на тело нескольких сил каждая из них сообщает телу такое же ускорение, какое она сообщила, если бы действовала одна.

Принцип суперпозиции сил – допущение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что воздействия взаимно не влияют друг на друга. Он применим к системам, поведение которых описывается линейными соотношениями.

Сложение нескольких сил, действующих одновременно на материальную точку (тело, систему) производится геометрически. Действие нескольких сил можно заменить действием одной силы, которая называется равнодействующей (рис. П1.9):

;

.

Условие равновесия сил:

.

На рисунке П1.10 показано равновесие сил, лежащих в одной плоскости, действующих на материальную точку. Рисунок П1.11 соответствует равновесию сил, не лежащих в одной плоскости, действующих на материальную точку. Две силы, действующие под углом на одну материальную точку, не могут уравновесить друг друга ни при каких условиях.

Так же и три силы, не лежащие в одной плоскости, не могут уравновесить друг друга ни при каких условиях (рис. П 1.12).

Ускорение в динамике a –результат действия силы.

Ускорение материальной точки в инерциальных системах отсчета К и К' одинаково:

; a= a'.

Второй закон Ньютона – изменение импульса пропорционально приложенной силе и направлено вдоль прямой, по которой действует данная сила (основное уравнение движения в классической динамике):

.

При Dt ® 0

.

При v << c ускорение, с которым движется тело, прямо пропорционально приложенной силе и обратно пропорционально массе тела:

.

В случае переменной массы

,

где – реактивная сила.

При движении по кривой результирующая сила может быть разложена на две составляющие (рис. П 1.13):

; ,

где R – радиус кривизны траектории;

– тангенциальная составляющая (касательная сила);

– нормальная составляющая (центростремительная сила).

Основной закон классической динамики – инвариантен при переходе от одной инерциальной системы к другой, при этом

ma= F; ma' = F'; F= F'.

Третий закон классической динамики –силы, с которыми взаимодействуют два тела, равны по величине и противоположны по направлению. Силы действия и противодействия приложены к разным телам и никогда не уравновешивают друг друга (рис. П1.14):

F12 = -F21.

Импульс силы –мера действия силы за некоторый промежуток времени:

.

Силы инерции обусловлены ускоренным движением системы отсчета по отношению к неподвижной системе. Различают:

1) силы, действующие на тело при ускоренном поступательном движении системы отсчета (рис. П1.15):

ma=ma + Fин,

где a – ускорение тела в неинерциальной системе отсчета;

a – ускорение тела в инерциальной системе отсчета;

Fин – сила инерции.

2) силы, действующие на тело, покоящееся во вращающейся системе отсчета (рис. П 1.16):

,

где Fц – центробежная сила инерции;

w – угловая скорость вращающейся системы отсчета;

r – радиус-вектор тела относительно начала вращающейся системы отсчета;

R – перпендикулярная к оси вращения составляющая r.

3) силы, действующие на тело, движущееся во вращающейся системе отсчета (рис. П1.17):

Fк =2m×[v ω],

где Fк – сила Кориолиса;

v – скорость движения тела;

w – угловая скорость вращающейся системы отсчета.

Основной закон динамики для неинерциальных систем отсчета:

ma= F + Fин + Fц+ Fк,

где F, Fин, Fц, Fк – ранее рассмотренные силы, действующие в неинерциальных системах отсчета.

Основная задача динамики вращательного движения – нахождение угловых ускорений, сообщаемых известными силами.

Момент инерции – скалярная физическая величина, характеризующая инертность тела при вращательном движении.

Момент инерции материальной точки относительно неподвижной оси вращения – физическая величина, равная произведению массы материальной точки на квадрат расстояния до оси или центра вращения (рис. П1.18):

DI = Dm×r2.

Момент инерции тела относительно оси z – физическая величина, равная сумме моментов инерции отдельных материальных точек тела относительно той же оси вращения (рис. П1.19):

; ,

где mi – масса i-й точки;

ri – расстояние i-й точки до оси z;

ρ – плотность вещества, из которого состоит тело;

V – объем тела.

Теорема Штейнера – момент инерции тела относительно произвольной оси z равен сумме момента инерции того же тела I0 относительно оси, параллельной данной и проходящей через центр масс, и произведения массы тела m на квадрат расстояния между осями (а):

Iz = I0 + mа2.

На рисунке П1.20 представлено применение теоремы Штейнера к расчету момента инерции диска относительно оси ОО', параллельной оси О1О1'.

Главные оси инерции – три взаимно перпендикулярных свободных оси вращения тела произвольной формы, проходящие через его центр масс.

Момент импульса материальной точки относительно неподвижной оси вращения (L) – векторная физическая величина, модуль которой равен произведению модуля импульса на плечо (рис. П1.21):

çLê= êpê×l.

В векторной форме

L=[r´p] = [mv],

где m – масса материальной точки;

v – скорость материальной точки;

l – плечо (кратчайшее расстояние от направления импульса до оси вращения).

Момент импульса системы относительно неподвижной оси вращения z –проекция на эту ось вектораL (момента импульса системы):

,

где ri, pi – радиус-вектор и импульс i-й материальной точки;

n – общее число точек в системе.

Связь момента импульса тела с вектором угловой скорости ω и моментом инерции

L= Iω.

Момент силы относительно центра вращения или неподвижной оси вращения – векторная физическая величина, модуль которой равен произведению модуля силы на плечо (рис. П1.22):

çMç=çFçl,

где l – плечо силы – кратчайшее расстояние от линии действия силы до центра вращения.

В векторной форме

M=[r´F].

Главный или результирующий момент сил относительно неподвижной оси вращенияравен векторной сумме моментов слагаемых сил:

.

Моменты сил относительно осей, которые перпендикулярны и параллельны оси вращения, равны нулю.

Основной закон динамики вращательного движения твердых (недеформирующихся) тел, для которых I=const (второй закон динамики для вращательного движения):

M= I∙ε; .

Импульс вращающего момента – произведение вращающего момента на время его действия:

dt = dL.

Осциллятор– физическая система, совершающая колебания; система, у которой величины, описывающие ее, периодически меняются с течением времени.

Гармонический осциллятор– механическая система, совершающая колебания около положения устойчивого равновесия, описывающие величины которой изменяются по гармоническому закону (закону синуса или косинуса).

Уравнение движения гармонического осциллятора:

; ; ,

где a = d2x/dt2 = –ω02x – ускорение материальной точки;

F – возвращающая сила, которая стремится вернуть систему в положение равновесия (F = –mω02x = –kx);

x – смещение;

k = mω02 – коэффициент возвращающей силы. Он численно равен возвращающей силе, вызывающей единичное смещение.

Решение уравнения движения гармонического осциллятора:

x = x0×sin (ω0t + φ0).

Уравнение гармонических колебаний в комплексном виде:

.

В теории колебаний принимается, что величина x равна вещественной части комплексного выражения, стоящего в этом выражении справа.

Дифференциальное уравнение гармонического колебательного движения:

.

Решением дифференциального уравнения гармонических колебанийявляется выражение вида

x = x0 sin (w0t + j0),

где k = m w02 – коэффициент возвращающей силы;

x – смещение материальной точки;

x0 – амплитуда колебаний;

w0 = 2p/Т = 2pn – круговая (циклическая частота);

n = 1/T – частота колебаний;

T – период колебаний;

j = (w0t + j0) – фаза колебаний;

j0 – начальная фаза колебаний.

Примеры гармонических осцилляторов:

а) пружинный маятник – тело массой m (рис. П1.23), подвешенное на пружине, совершающее гармоническое колебание.

Упругие колебания совершаются под действием упругих сил:

F= –k∙Dl,

где k = m wo2 – коэффициент жесткости;

Dl – относительное удлинение.

Уравнение движения пружинного маятника:

; ,

где ;

Dl – величина деформации.

Решение уравнения движения пружинного маятника:

Dl = (Dl)0×sin (ω0t + φ0).

Круговая частота, частота и период колебаний пружинного маятника:

; ; ;

б) физический маятник – твердое тело, совершающее гармоническое колебательное движение относительно оси, не совпадающей с центром масс (рис. П1.24).

Уравнение движения физического маятника:

.

Решение уравнения движения физического маятника:

j = j0×sin (ω0t + α),

где α – начальная фаза колебаний.

Круговая частота, частота и период колебаний физического маятника:

; ; ; ,

где L = I/md – приведенная длина физического маятника – длина такого математического маятник, период колебаний которого равен периоду колебаний физического маятника;

I – момент инерции физического маятникa относительно оси колебаний;

m – масса физического маятника;

d – расстояние между осью колебаний и центром масс;

в) математический маятник – тело массой m, размерами которого можно пренебречь, подвешенное на невесомой, нерастяжимой нити (рис. П1.25).

Круговая частота, частота и период колебаний математического маятника:

; ; .

Приведенная длина физического маятника – величина, численно равная длине такого математического маятника, период колебаний которого равен периоду колебаний физического маятника:

.

Крутильные колебания – колебания, совершающиеся под действием закручивающего момента, пропорционального углу закручивания (колебания диска, подвешенного на стальной нити):

M= – Da,

где – коэффициент крутильной жесткости;

G – модуль сдвига;

r – радиус нити;

l – длина нити.



>
  • 11
  • 12
  • 13
  • 14
  • 15
  • 161718
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • Далее ⇒