Основные правила дифференцирования
Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.
1) (u ± v)¢ = u¢ ± v¢
2) (u×v)¢ = u×v¢ + u¢×v
3) , если v ¹ 0
Эти правила могут быть легко доказаны на основе теорем о пределах.
Производные основных элементарных функций
1)С¢ = 0; 9)
2)(xm)¢ = mxm-1; 10)
3) 11)
4) 12)
5) 13)
6) 14)
7) 15)
8) 16)
Производная сложной функции
Теорема.Пусть y = f(x); u = g(x), причем область значений функции u входит в область определения функции f.
Тогда
Логарифмическое дифференцирование
Рассмотрим функцию .
Тогда (lnïxï)¢= , т.к. .
Учитывая полученный результат, можно записать .
Отношение называется логарифмической производной функции f(x).
Способ логарифмического дифференцированиясостоит в том, что сначала находят логарифмическую производную функции, а затем производную самой функции по формуле
Производная показательно- степенной функции
Функция называется показательной, если независимая переменная входит в показатель степени, и степенной, если переменная является основанием. Если же и основание и показатель степени зависят от переменной, то такая функция будет показательно – степенной.
Пусть u = f(x) и v = g(x) – функции, имеющие производные в точке х, f(x)>0.
Найдем производную функции y = uv. Логарифмируя, получим:
lny = vlnu
Пример. Найти производную функции .
По полученной выше формуле получаем:
Производные этих функций:
Окончательно:
Производная обратных функций
Пусть требуется найти производную функции у = f(x) при условии, что обратная ей функция x = g(y) имеет производную, отличную от нуля в соответствующей точке.
Для решения этой задачи дифференцируем функцию x = g(y) по х:
т.к. g¢(y) ¹ 0
т.е. производная обратной функции обратна по величине производной данной функции.
Пример. Найти формулу для производной функции arctg.
Функция arctg является функцией, обратной функции tg, т.е. ее производная может быть найдена следующим образом:
Известно, что
По приведенной выше формуле получаем:
Т.к. то можно записать окончательную формулу для производной арктангенса:
Таким образом получены все формулы для производных арксинуса, арккосинуса и других обратных функций, приведенных в таблице производных.
Пример. Найти производную функции .
Сначала преобразуем данную функцию:
Пример. Найти производную функции .
Пример. Найти производную функции
Пример. Найти производную функции
Пример. Найти производную функции