Определение. Точки максимума и минимума функции называются точками экстремума.
Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.
Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.
Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.
Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но этого недостаточно.
Пример: f(x) = ôxô Пример: f(x) =
y y
x
x
В точке х = 0 функция имеет минимум, но не имеет производной. | В точке х = 0 функция не имеет ни максимума, ни минимума, ни производной. |
Вообще говоря, функция f(x) может иметь экстремум в точках, где производная не существует или равна нулю.
Теорема. (Достаточные условия существования экстремума)
Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).
Если при переходе через точку х1 слева направо производная функции f¢(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.
На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:
1) Найти критические точки функции.
2) Найти значения функции в критических точках.
3) Найти значения функции на концах отрезка.
4) Выбрать среди полученных значений наибольшее и наименьшее.
Исследование функции на экстремум с помощью
Производных высших порядков
Пусть в точке х = х1 f¢(x1) = 0 и f¢¢(x1) существует и непрерывна в некоторой окрестности точки х1.
Теорема. Если f¢(x1) = 0, то функция f(x) в точке х = х1 имеет максимум, если f¢¢(x1)<0 и минимум, если f¢¢(x1)>0.
Выпуклость и вогнутость кривой
Точки перегиба
Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.
у
x
На рисунке показана иллюстрация приведенного выше определения.
Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла).
Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.
Очевидно, что в точке перегиба касательная пересекает кривую.
Теорема 2. Пусть кривая определяется уравнением y = f(x). Если вторая производная f¢¢(a) = 0 или f¢¢(a) не существует и при переходе через точку х = а f¢¢(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.
Асимптоты
При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.
Определение. Прямая называется асимптотойкривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.
Следует отметить, что не любая кривая имеет асимптоту. Асимптоты могут быть прямые и наклонные. Исследование функций на наличие асимптот имеет большое значение и позволяет более точно определить характер функции и поведение графика кривой.
Вообще говоря, кривая, неограниченно приближаясь к своей асимптоте, может и пересекать ее, причем не в одной точке, как показано на приведенном ниже графике функции . Ее наклонная асимптота у = х.
Рассмотрим подробнее методы нахождения асимптот кривых.
Вертикальные асимптоты
Из определения асимптоты следует, что если или или , то прямая х = а – асимптота кривой y = f(x).
Например, для функции прямая х = 5 является вертикальной асимптотой.
Наклонные асимптоты
Предположим, что кривая y = f(x) имеет наклонную асимптоту y = kx + b.
M
j
N
j P
Q
Обозначим точку пересечения кривой и перпендикуляра к асимптоте – М, Р – точка пересечения этого перпендикуляра с асимптотой. Угол между асимптотой и осью Ох обозначим j. Перпендикуляр МQ к оси Ох пересекает асимптоту в точке N.
Тогда MQ = y – ордината точки кривой, NQ = - ордината точки N на асимптоте.
По условию: , ÐNMP = j, .
Угол j - постоянный и не равный 900, тогда
Тогда .
Итак, прямая y = kx + b – асимптота кривой. Для точного определения этой прямой необходимо найти способ вычисления коэффициентов k и b.
В полученном выражении выносим за скобки х:
Т.к. х®¥, то , т.к. b = const, то .
Тогда , следовательно,
.
Т.к. , то , следовательно,
Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.
Пример. Найти асимптоты и построить график функции .
1) Вертикальные асимптоты: y®+¥ x®0-0: y®-¥ x®0+0, следовательно, х = 0- вертикальная асимптота.
2) Наклонные асимптоты:
Таким образом, прямая у = х + 2 является наклонной асимптотой.
Построим график функции:
Пример. Найти асимптоты и построить график функции .
Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.
Найдем наклонные асимптоты:
y = 0 – горизонтальная асимптота.
Пример. Найти асимптоты и построить график функции .
Прямая х = -2 является вертикальной асимптотой кривой.
Найдем наклонные асимптоты.
Итого, прямая у = х – 4 является наклонной асимптотой.