Векторная функция скалярного аргумента

z

 

A(x, y, z)

 

 

 

y

 

 

х

 

Пусть некоторая кривая в пространстве задана параметрически:

x = j(t); y = y(t); z = f(t);

 

Радиус- вектор произвольной точки кривой: .

Таким образом, радиус- вектор точки кривой может рассматриваться как некоторая векторная функция скалярного аргумента t. При изменении параметра t изменяется величина и направление вектора .

 

Запишем соотношения для некоторой точки t0:

Тогда вектор - предел функции (t). .

 

Очевидно, что

, тогда

 

.

 

Чтобы найти производную векторной функции скалярного аргумента, рассмотрим приращение радиус- вектора при некотором приращении параметра t.

 
 


 

; ;

 

 

 

или, если существуют производные j¢(t), y¢(t), f¢(t), то

 

Это выражение – вектор производная вектора .

 

 

Если имеется уравнение кривой:

x = j(t); y = y(t); z = f(t);

то в произвольной точке кривой А(xА, yА, zА) с радиус- вектором

 

можно провести прямую с уравнением

Т.к. производная - вектор, направленный по касательной к кривой, то

 

.

 

Уравнение нормальной плоскостик кривой будет иметь вид:

 

 

Пример. Составить уравнения касательной и нормальной плоскости к линии, заданной уравнением в точке t = p/2.

 

Уравнения, описывающие кривую, по осям координат имеют вид:

 

x(t) = cost; y(t) = sint; z(t) = ;

Находим значения функций и их производных в заданной точке:

 

x¢(t) = -sint; y¢(t) = cost;

x¢(p/2) = -1; y¢(p/2) = 0; z¢(p/2)=

x(p/2) = 0; y(p/2) = 1; z(p/2)= p /2

 

- это уравнение касательной.

 

Нормальная плоскость имеет уравнение:

 

Параметрическое задание функции

 

Исследование и построение графика кривой, которая задана системой уравнений вида:

,

производится в общем то аналогично исследованию функции вида y = f(x).

 

Находим производные:

Теперь можно найти производную . Далее находятся значения параметра t, при которых хотя бы одна из производных j¢(t) или y¢(t) равна нулю или не существует. Такие значения параметра t называются критическими.

Для каждого интервала (t1, t2), (t2, t3), … , (tk-1, tk) находим соответствующий интервал (x1, x2), (x2, x3), … , (xk-1, xk) и определяем знак производной на каждом из полученных интервалов, тем самым определяя промежутки возрастания и убывания функции.

Далее находим вторую производную функции на каждом из интервалов и, определяя ее знак, находим направление выпуклости кривой в каждой точке.

Для нахождения асимптот находим такие значения t, при приближении к которым или х или у стремится к бесконечности, и такие значения t, при приближении к которым и х и у стремится к бесконечности.

В остальном исследование производится аналогичным также, как и исследование функции, заданной непосредственно.

 

На практике исследование параметрически заданных функций осуществляется, например, при нахождении траектории движущегося объекта, где роль параметра t выполняет время.

Ниже рассмотрим подробнее некоторые широко известные типы параметрически заданных кривых.