Непрерывно-детерминированные модели (Д-схемы)
Если в модели системы не учитывается воздействие случайных факторов, а операторы переходов и выходов непрерывны (это означает, что малые изменения входных воздействий приводят к такого же порядка малым изменениям выходного воздействия и состояния системы), то состояния системы и выхода соответственно могут быть представлены в виде дифференциальных уравнений:
(3.6)
(3.7)
где h, g – вектор-функции состояний и выходов соответственно; х, z, у – векторы входных воздействий, состояний и выходных воздействий соответственно.
Дифференциальными уравнениями называются такие уравнения, в которых неизвестными будут функции одной переменной или нескольких переменных, причём в уравнение входят не только их функции, но их производные различных порядков. Если неизвестные – функции многих переменных, то уравнения называются – уравнения в частных производных. Если неизвестные функции одной независимой переменной, то имеют место обыкновенные дифференциальные уравнения.
Математическое соотношение для детерминированных систем в общем виде:
.
В случае линейности таких систем, когда операторы переходов и выходов обладают свойствами однородности и аддитивности, вид уравнений (3.6) и (3.7) упрощается, что дает возможность аналитического решения или исследования известными методами с помощью вычислительных машин.
Построение математических моделей непрерывных линейных детерминированных систем в виде дифференциальных уравнений используется при анализе функционирования элементов и электрических цепей приборных систем.
3.3. Дискретно-детерминированные модели (F-схемы)
Дискретно-детерминированные модели (ДДМ) являются предметом рассмотрения теории автоматов (ТА) – раздела теоретической кибернетики, изучающей устройства, перерабатывающие дискретную информацию и меняющие свои внутренние состояния лишь в допустимые моменты времени.
Конечный автомат (КА) имеет множество внутренних состояний и входных сигналов, являющихся конечными множествами. Автомат задаётся F-схемой:
F = <z, x, y, j, y, z0>, (3.8)
где z, x, y – соответственно конечные множества входных, выходных сигналов (алфавитов) и конечное множество внутренних состояний (алфавита). z0 Î Z – начальное состояние; j(z, x) – функция переходов; y(z, x) – функция выхода. Автомат функционирует в дискретном автоматном времени, моментами которого являются такты, т.е. примыкающие друг к другу равные интервалы времени, каждому из которых соответствуют постоянные значения входного, выходного сигнала и внутреннего состояния. Абстрактный автомат имеет один входной и один выходной каналы.
В момент t, будучи в состоянии z(t), автомат способен воспринять сигнал x(t) и выдать сигнал y(t) = y[z(t), x(t)], переходя в состояние z(t + 1) = j[z(t), z(t)], z(t) Î Z; y(t) Î Y; x(t) Î X. Абстрактный КА в начальном состоянии z0, принимая сигналы x(0), x(1), x(2), … (входное слово), выдаёт сигналы y(0), y(1), y(2), … (выходное слово).
Существуют:
1) F-автомат 1-ого рода (автомат Миля), функционирующий по схеме:
z(t + 1) = j[z(t), z(t)], t = 0, 1, 2, … (3.9)
y(t) = y[z(t), x(t)], t = 0, 1, 2, …; (3.10)
2) F-автомат 2-ого рода:
z(t + 1) = j[z(t), z(t)], t = 0, 1, 2, … (3.11)
y(t) = y[z(t), x(t – 1)], t = 1, 2, 3, …; (3.12)
3) F-автомат 2-ого рода, для которого функция выходов не зависит от входной переменной x(t) (автомат Мура):
z(t + 1) = j[z(t), z(t)], t = 0, 1, 2, … (3.13)
y(t) = y[z(t)], t = 0, 1, 2, …; (3.14)
Таким образом, уравнения (3.9-3.14), полностью задающие F-автомат, являются частным случаем уравнения:
, (3.15)
где – вектор состояний, – вектор независимых входных переменных, – вектор воздействий внешней среды, – вектор собственных внутренних параметров системы, – вектор начального состояния, t – время; и уравнения
, (3.16)
когда система S – денормированная, и на её вход поступает дискретный сигнал x.
По числу состояний конечные автоматы бывают с памятью и без памяти. Автоматы с памятью имеют более одного состояния, а автоматы без памяти (комбинационные или логические схемы) обладают лишь одним состоянием. При этом согласно (3.10) работа комбинационной схемы заключается в том, что она ставит в соответствие каждому входному сигналу x(t) определённый выходной сигнал y(t), т.е. реализует логическую функцию вида:
y(t) = y[x(t)], t = 0, 1, 2, …
Эта функция называется булевой, если алфавиты X и Y, которым принадлежат значения сигналов x и y, состоят из 2-х букв.
По характеру отсчёта времени (дискретному) F-автоматы делятся на синхронные и асинхронные. В синхронных автоматах моменты времени, в которые автомат «считывает» входные сигналы, определяются принудительно синхронизирующими сигналами. Реакция автомата на каждое значение входного сигнала заканчивается за один такт синхронизации. Асинхронный F-автомат считывает входной сигнал непрерывно, и поэтому, реагируя на достаточно длинный водной сигнал постоянной величины x, он может, как это следует из 3.8-3.14, несколько раз изменить своё состояние, выдавая соответствующее число выходных сигналов, пока не перейдёт в устойчивое.
Для задания F-автомата необходимо описать все элементы множества F = <z, x, y, j, y, z0>, т.е. входной, внутренний и выходной алфавиты, а также функции переходов и выходов. Для задания работы F-автоматов наиболее часто используются табличный, графический и матричный способ.
В табличном способе задания используется таблицы переходов и выходов, строки которых соответствуют входным сигналам автомата, а столбцы – его состояниям. При этом обычно 1-ый столбец слева соответствует начальному состоянию z0. На пересечении i-ой строки и j-ого столбца таблицы переходов помещается соответствующее значение j(zk, xi) функции переходов, а в таблице выходов – y(zk, xi) функции выходов. Для F-автомата Мура обе таблицы можно совместить, получив отмеченную таблицу переходов, в которой над каждым состоянием zk автомата, обозначающим столбец таблицы, стоит соответствующий этому состоянию, согласно (3.14), выходной сигнал y(zi).
Описание работы F-автомата Миля таблицами переходов j и выходов y иллюстрируется таблицей 3.1, а описание F-автомата Мура – таблицей переходов 3.2.
Таблица 3.1 | Таблица 3.2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
При другом способе задания конечного автомата используется понятие направленного графа. Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершин дуг графа, соответствующих тем или иным переходам автомата. Если входной сигнал xk вызывает переход из состояния zi в состояние zj, то на графе автомата дуга, соединяющая вершину zi с вершиной zj, обозначается xk. Для того чтобы задать функцию переходов, дуги графа необходимо отметить соответствующими выходными сигналами. Для автоматов Миля эта разметка производиться так: если входной сигнал xk действует на состояние zi, то получается дуга, исходящая из zi и помеченная xk; эту дугу дополнительно отмечают выходным сигналом y = y(zi, xk). Для автомата Мура аналогичная разметка графа такова: если входной сигнал xk, действуя на некоторое состояние автомата, вызывает переход в состояние zj, то дугу, направленную в zj и помеченную xk, дополнительно отмечают выходным сигналом y = y(zj, xk). На рис. 3.1 приведены заданные ранее таблицами F-автоматы Миля F1 и Мура F2 соответственно.
Рис. 3.1. Графы автоматов Миля (а) и Мура (б)
При решении задач моделирования часто более удобной формой является матричное задание конечного автомата. При этом матрица соединений автомата есть квадратная матрица , строки которой соответствуют исходным состояниям, а столбцы – состояниям перехода. Элемент cij = xk/ys в случае автомата Миля соответствует входному сигналу xk, вызывающему переход из состояния zi в состояние zj, и выходному сигналу ys, выдаваемому при этом переходе. Для автомата Миля F1, рассмотренного выше, матрица соединений имеет вид:
.
Если переход из состояния zi в состояние zj происходит под действием нескольких сигналов, элемент матрицы cij представляет собой множество пар «вход/выход» для этого перехода, соединённых знаком дизъюнкции.
Для F-автомата Мура элемент cij равен множеству входных сигналов на переходе (zi ® zj), а выход описывается вектором выходов:
,
i-ая компонента которого выходной сигнал, отмечающий состояние zi.
Для детерминированных автоматов переходы однозначны. Это означает, что в графе F-автомата из любой вершины не могут выходить 2 и более ребра, отмеченные одним и тем же входным сигналом. Аналогично этому в матрице соединений автомата C в каждой строке любой входной сигнал не должен встречаться более одного раза.
Для F-автомата состояние zk называется устойчивым, если для любого входа xi Î X, для которого j(zk, xi) = zk имеет место y(zk, xi) = yk. Таким образом, F-автомат называется асинхронным, если каждое его состояние zk Î Z устойчиво.
На практике всегда автоматы являются асинхронными, а устойчивость их состояний обеспечивается тем или иным способом, например, введением сигналов синхронизации. На уровне абстрактной теории удобно оперировать синхронными конечными автоматами.
Если в таблице переходов асинхронного автомата некоторое состояние zk стоит на пересечении строки xs и столбца zs (s ¹ k), то это состояние zk обязательно должно встретиться в этой же строке в столбце zk.
С помощью F-схем описываются узлы и элементы ЭВМ, устройства контроля, регулирования и управления, системы временной и пространственной коммутации в технике обмена информацией. Широта применения F-схем не означает их универсальность. Этот подход непригоден для описания процессов принятия решений, процессов в динамических системах с наличием переходных процессов и стохастических элементов.
4. Непрерывно-стохастические модели (Q-схемы)
К ним относятся системы массового обслуживания (queuing systems), которые называют Q-схемами.
Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели.
Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем. Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий, т.е. задачи рассматриваются в условиях неопределенности.