Закон сохранения момента импульса.

L = const. (19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса:мо­мент импульса замкнутой системы сохра­няется, т. е. не изменяется с течением времени.

Закон сохранения момента импуль­са — фундаментальный закон природы, Он связан со свойством симметрии про­странства — его изотропностью, т. е. с инвариантностью физических законов отно­сительно выбора направления осей коор­динат системы отсчета (относительно поворота замкнутой системы в простран­стве на любой угол).

Чтобы количественно характеризовать процесс обмена энергией между взаимодействую­щими телами, в механике вводится по­нятие работы силы.

Работа этой силы равна произведению проекции силы Fs на направление перемещения (Fs =Fcosa), умноженной на перемещение точки приложения силы:

A = Fss = Fscosa. (11.1)

Элемен­тарной работойсилы F на перемещении drназывается скалярная величина

=Fdr = Fcosa•ds=Fsds,

где а — угол между векторами F и dr; ds = |dr| — элементарный путь; Fs — про­екция вектора F на вектор dr (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сум­ма приводится к интегралу

Для вычисления этого интеграла надо знать зависимость силы Fs от пути s вдоль траектории 12. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графи­ке площадью закрашенной фигуры. Если, например, тело движется прямолинейно, сила F=const и a=const, то получим

где s — пройденный телом путь (см. также формулу (11.1)).

Из формулы (11.1) следует, что при a<p/2 работа силы положительна, в этом случае составляющая Fs совпадает

по направлению с вектором скорости дви­жения v (см. рис. 13). Если a>p/2, то работа силы отрицательна. При a=p/2 (сила направлена перпендикулярно пере­мещению) работа силы равна нулю.

Единица работы — джоуль(Дж): 1 Дж — работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н•м).

7 билет.

Враща́тельное движе́ние — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

(5.10)

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента всех внешних сил, действующих на это тело.

Моментом инерциисистемы (тела) отно­сительно оси вращения называется физи­ческая величина, равная сумме произведе­ний масс n материальных точек системы на квадраты их расстояний до рассматри­ваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с коорди­натами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой Л и радиусом R относительно его геометрической оси (рис.23). Разобьем

 

 

цилиндр на отдельные полые концентриче­ские цилиндры бесконечно малой толщины dr с внутренним радиусом rи внешним — r+dr. Момент инерции каждого полого цилиндра dJ = r2dm (так как dr<<r, то считаем, что расстояние всех точек ци­линдра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r — плотность материала, то dm=r•2prhdr и dJ = 2prr3dr. Тогда мо­мент инерции сплошного цилиндра

но так как pR'2h — объем цилиндра, то его масса m = pR2hr, а момент инерции

J = 1/2R2.

Моментом силы F относительно неподвиж­ной точкиО называется физическая вели­чина, определяемая векторным произведе­нием радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):

M = [rF].

Моментом силы относительно непод­вижной осиz называется скалярная вели­чина Мz, равная проекции на эту ось век­тор а М момента силы, определенного от­носительно произвольной точки О данной оси 2 (рис.26).

Моментом импульса (количества дви­жения)материальной точки А относитель­но неподвижной точкиО называется физи­ческая величина, определяемая векторным произведением:

L= [rp| = [rmv],

 

где r — радиус-вектор, проведенный из точки О в точку A; p = mv — импульс ма­териальной точки (рис.28); L—псевдо­вектор, его направление совпадает с на­правлением поступательного движения правого винта при его вращении от r к p. Модуль вектора момента импульса

L = rpsinalfa=mvrsinalfa=pl,

где a — угол между векторами r и p, l — плечо вектора р относительно точки О.

Моментом импульса относительно не­подвижной осиz называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О дан­ной оси.

Момент импульса твердого телаотно­сительно оси есть сумма моментов импуль­са отдельных частиц:

Используя формулу (17.1) vi = wri, получим

т. е.

Lz = Jzw. (19.2)

Таким образом, момент импульса твердого тела относительно оси равен произведе­нию момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем уравнение (19.2) по времени:

т. е.

dLz/dt= Mz

8 билет.

Теоре́ма Гю́йгенса — Ште́йнера, или просто теорема Штейнера (названа по имени швейцарского математика Якоба Штейнера и голландского математика, физика и астронома Христиана Гюйгенса): момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела JC относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

где

JC — известный момент инерции относительно оси, проходящей через центр масс тела,

J — искомый момент инерции относительно параллельной оси,

m — масса тела,

d — расстояние между указанными осями.

 

Момент инерции, по определению:

Радиус-вектор можно расписать как разность двух векторов:

,

где — радиус-вектор расстояния между старой и новой осью вращения. Тогда выражение для момента инерции примет вид:

Вынося за сумму , получим:

Поскольку старая ось проходит через центр масс, то суммарный импульс тела будет равен нулю:

Тогда:

Откуда и следует искомая формула:

,

где JC — известный момент инерции относительно оси, проходящей через центр масс тела.

Пример

Момент инерции стержня относительно оси, проходящей через его центр и перпендикулярной стержню, (назовём её осью C) равен

Тогда согласно теореме Штейнера его момент относительно произвольной параллельной оси будет равен

где d — расстояние между искомой осью и осью C. В частности, момент инерции стержня относительно оси, проходящей через его конец и перпендикулярной стержню, можно найти положив в последней формуле d = L / 2:

 

 

9 билет.

Установлено также, что во всех инерциальных си­стемах отсчета законы классической дина­мики имеют одинаковую форму; в этом суть механического принципа относитель­ности (принципа относительности Гали­лея).

а = а'. (34.5)

Следовательно, если на точку А другие тела не действуют (а = 0), то, согласно (34.5), и а' = 0, т.е. система K' является инерциальной (точка движется относи­тельно нее равномерно и прямолинейно или покоится).

Таким образом, из соотношения (34.5) вытекает доказательство механического принципа относительности: уравнения ди­намики при переходе от одной инерциаль­ной системы отсчета к другой не изменя­ются, т. е. являются инвариантнымипо отношению к преобразованиям координат. Галилей обратил внимание, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, дви­жущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.

I. Принцип относительности:никакие опыты (механические, электрические, оп­тические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы ин­вариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

 

II. Принцип инвариантности скорости света:скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерци­альных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа от­носительности Галилея на любые физиче­ские процессы, утверждает, таким обра­зом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описываю­щие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Со­гласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления (механические, электродина­мические, оптические и др.) во всех инер­циальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштей­на, постоянство скорости света — фунда­ментальное свойство природы, которое констатируется как опытный факт.

Эйнштейн показал, что в теории отно­сительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой (см.§34):

— заменяются преобразованиями Лорен­ца, удовлетворяющими постулатам Эй­нштейна (формулы представлены для слу­чая, когда К' движется относительно К со скоростью v вдоль оси х).

Эти преобразования предложены Лоренцом в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Макс­велла (см. § 139) инвариантны.

Преобразования Лоренцаимеют вид

Из сравнения приведенных уравнений вы­текает, что они симметричны и отличают­ся лишь знаком при v. Это очевидно, так как если скорость движения системы К' относительно системы К равна v, то ско­рость движения К относительно К! рав­на -v.

Из преобразований Лоренца следует очень важный вывод о том, что как рассто­яние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках пре­образований Галилея эти величины счита­лись абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и времен­ные преобразования (см. (36.3)) не явля­ются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени — про­странственные координаты, т. е. устанав­ливается взаимосвязь пространства и вре­мени. Таким образом, теория Эйнштейна оперирует не с трехмерным простран­ством, к которому присоединяется понятие времени, а рассматривает неразрывно свя­занные пространственные и временные ко­ординаты, образующие четырехмерное пространство-время.