Примеры. 66. Проверить, что поле =(y+z) + (z+x) +(x+y) является потенциальным, и найти его потенциал
66. Проверить, что поле
=(y+z)
+ (z+x)
+(x+y)
является потенциальным, и найти его потенциал.
Решение. Поле
определено во всем пространстве, т.е. в односвязной области, поэтому достаточно проверить, что rot
=0. Имеем:
rot
=
=(1–1)
+(1–1)
+(1–1)
=
,
что и доказывает потенциальный характер поля
.
Найдем потенциал двумя способами.
1 способ.
Для нахождения потенциала воспользуемся формулой (*), беря в качестве М0 начало координат:

2 способ.
Будем снова считать М0(0,0,0).
Пусть
=x
+y
+z
– радиус-вектор точки М(x,y,z), а точка N пробегает отрезок M0М; ее радиус‑вектор
. Точка N имеет координаты tx, ty, tz.
Отсюда d
=
dt. Положим
.
Для рассматриваемого поля
(t)=t(y+z)
+ t(z+x)
+t(x+y)
.
(
(t),
)=t(y+z)x+t(z+x)y+t(x+y)z=2t(xy+yz+zx).
Следовательно,
=(xy+yz+zx)
= xy+yz+zx.
Ответ: xy+yz+zx.
67. Доказать, что циркуляция потенциального поля по любому замкнутому контуру равна нулю.
Решение: Пусть
- потенциальное поле и (L) - замкнутый контур, началом и концом которого является точка М(М=М0).
Тогда
, что и требовалось доказать.